

AD/ADVANTAGE

MANTIS SUPRA SQL Programming
OpenVMS/UNIX

P39-1345-00

AD/Advantage® MANTIS SUPRA SQL Programming OpenVMS/UNIX

Publication Number P39-1345-00

� 1993, 1994, 1997, 1998, 1999, 2001, Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™

MANTIS®
Mindspeed™
MindspeedXML™
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

All other trademarks are trademarks or registered trademarks of:

Acucobol, Inc.
AT&T
Compaq Computer Corporation
Data General Corporation
Gupta Technologies, Inc.
International Business Machines Corporation
JSB Computer Systems Ltd.

Micro Focus, Inc.
Microsoft Corporation
Systems Center, Inc.
TechGnosis International, Inc.
The Open Group
UNIX System Laboratories, Inc.

or of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U. S. A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

http://www.cincom.com/

Release information for this manual

The AD/Advantage MANTIS SUPRA SQL Programming
OpenVMS/UNIX, P39-1345-00, is dated February 12, 2001. This
document supports Release 2.8 of MANTIS.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for AD/Advantage

FAX: (513) 612-2000
 Attn: MANTIS Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: MANTIS Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U. S. A.

mailto:helpna@cincom.com

MANTIS SUPRA SQL Programming OpenVMS/UNIX v

Contents

About this book ix
Using this document ...ix

Document organization..ix
Revisions to this manual.. x
Conventions...xi

MANTIS documentation series...xiv
Educational material ...xv

MANTIS SQL support overview 17
Software requirements for MANTIS SQL support .. 19
Differences between SQL in MANTIS and SQL in COBOL 19
Logical names .. 20
Static and dynamic SQL ... 20
Security... 20

System maintenance 21
MANTIS SQL options ... 22
Update User Profile .. 22
Signing on... 23

Embedding SQL statements in MANTIS programs 25
Embedding rules... 26
Using host variables ... 29

Referencing values in a MANTIS array ... 30
MANTIS versus SQL data types.. 30

Indicator variables .. 31
Data conversion between MANTIS SQL support and the SUPRA database............. 32

Programming considerations 33
Running an EXEC_SQL-END block ... 35
The scope of cursors, statements, and SQLDAs ... 36
Connection to the SUPRA database and multiple session support............................ 37

Contents

vi P39-1345-00

Disconnection from the SUPRA database ..38
The MANTIS EXEC_SQL statement ..39
The SQL WHENEVER statement...41

Declarative versus interpretive WHENEVER statements45
Scope of the WHENEVER statement ..46

The SQL FINISH statement ..46
The SQL SET DBNAME statement ..46
The SQLCA in MANTIS SQL support ...47

SQLCA syntax..47
SQLCA elements ...49

COMMIT and ROLLBACK and MANTIS SQL support’s COMMIT and RESET51
Error messages...53

Dynamic SQL in MANTIS SQL support 55
An overview of dynamic SQL ..55

Executing a statement dynamically..56
Code sequence for dynamic SQL ..56

The SQLDA structure..58
Allocate an SQLDA ..60
Deallocate an SQLDA..61
Move data from your program into an SQLDA header element.....................62
Move data from your program into an SQLDA repeating element.................65
Move data from an SQLDA header element into your program.....................68
Move data from an SQLDA repeating element into your program.................69

Sample MANTIS SQL programs 73
A static insert routine...74
A dynamic insert routine..76
A static update routine ..78
A dynamic update routine ...79
A static select routine ..81
A dynamic select routine ...82
A static delete routine..84
A dynamic delete routine...85
An SQL query function ..86
A dynamic column select ..90

Features not supported 91

Differences: MANTIS SQL support versus SQL in COBOL; MANTIS
versus SQL 93

SQL in MANTIS SQL support versus SQL in COBOL..94
MANTIS versus SQL...95

Contents

MANTIS SUPRA SQL Programming OpenVMS/UNIX vii

Index 97

Contents

viii P39-1345-00

MANTIS SUPRA SQL Programming OpenVMS/UNIX ix

About this book

Using this document
MANTIS® is an application development system that consists of design
facilities (for example, screens and files) and a programming language.
This manual describes MANTIS SQL Programming support for
OpenVMS/UNIX.

Document organization
The information in this manual is organized as follows:

Chapter 1—MANTIS SQL support overview
Provides an overview of MANTIS SQL support and how to use it to
create MANTIS applications that use SQL.

Chapter 2—System maintenance
Provides supplemental information to MANTIS administration and
installation documents for the Master User.

Chapter 3—Embedding SQL statements in MANTIS programs
Describes the rules you must follow when embedding SQL
statements in a MANTIS program.

Chapter 4—Programming considerations
Describes implications for program design resulting from the
interpretative nature of MANTIS SQL support.

Chapter 5—Dynamic SQL in MANTIS SQL support
Discusses how dynamic SQL works in MANTIS SQL support.

Appendix A—Sample MANTIS SQL programs
Provides examples of static and dynamic MANTIS SQL programs.

Appendix B—Features not supported
Lists the features of SQL that are not supported for SUPRA SQL.

About this book

x P39-1345-00

Appendix C—Differences: MANTIS SQL support versus SQL in
COBOL; MANTIS versus SQL; MANTIS versus SQL
Summarizes the differences between SQL in MANTIS SQL support
and SQL in other languages.

Index

Revisions to this manual
The following changes have been made for this release:

♦ Updated Publication Release Number from P25-1330-03 to
P39-1330-00.

♦ Updated publication titles and numbers under “MANTIS
documentation series” on page xiv and the entire document.

♦ Updated document release date.

♦ Added software requirements in “Software requirements for MANTIS
SQL support” on page 19.

♦ Updated Facility Selection Screen in “System maintenance” on
page 21.

About this book

MANTIS SUPRA SQL Programming OpenVMS/UNIX xi

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width type Represents screen images and

segments of code.
Screen Design Facility
GET NAME LAST
INSERT ADDRESS

Slashed b (b/) Indicates a space (blank).
The example indicates that a
password can have a trailing
blank.

WRITEPASSb/

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations.

 A single item enclosed by
brackets indicates that the item
is optional and can be omitted.
The example indicates that you
can optionally enter a program
name.

COMPOSE [program-name]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can
be selected.
The example indicates that you
can optionally enter NEXT,
PRIOR, FIRST, or LAST.
(NEXT is underlined to indicate
that it is the default.)

�
�
�
�

�

�

�
�
�
�

�

�

LAST

FIRST

PRIOR

NEXT

About this book

xii P39-1345-00

Convention Description Example
Braces { } Indicate selection of

parameters. (Do not attempt to
enter braces or to stack
parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter FIRST, LAST, or a
value for begin.

�
�

�
�

�

�
�

�
�

�

LAST

FIRST

begin

Underlining
(In syntax)

Indicates the default value
supplied when you omit a
parameter.
The example indicates that if
you do not specify ON, OFF, or
a row and column destination,
the system defaults to ON.

[][] �
�
�

�

�

�
�
�

�

�

colrow ,

OFF

ON

 SCROLL

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you
can enter either PRO or
PROTECTED.

PROTECTED

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you
can enter (A), (A,B), (A,B,C), or
some other argument in the
same pattern.

(argument,...)

About this book

MANTIS SUPRA SQL Programming OpenVMS/UNIX xiii

Convention Description Example
UPPERCASE Indicates MANTIS reserved

words. You must enter them
exactly as they appear.
The example indicates that you
must enter CONVERSE exactly
as it appears.

CONVERSE name

Italics Indicate variables you replace
with a value, a column name, a
file name, and so on.
The example indicates that you
can supply a name for the
program.

COMPOSE [program-name]

Punctuation marks Indicate required syntax that
you must code exactly as
presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

LET ()
() ROUNDED() = v i
i , j n e1 , e2, e3. . .

UNIX
 OpenVMS

Information specific to a certain
operating system is flagged by
a symbol in a shadowed box
(e.g., UNIX) indicating which
operating system is being
discussed. Skip any
information that does not
pertain to your environment.

UNIX DBA will run on any
terminal that supports
the cursor library.

About this book

xiv P39-1345-00

MANTIS documentation series
MANTIS is an application development system designed to increase
productivity in all areas of application development, from initial design
through production and maintenance. MANTIS is part of AD/Advantage®,
which offers additional tools for application development. Below are
listed the manuals offered with MANTIS in the OpenVMS™ and UNIX®
environments, organized by task. You may not have all the manuals that
are listed here. For a synopsis of each manual, refer to the
AD/Advantage MANTIS Application Development Tutorial
OpenVMS/UNIX, P39-1340.

Getting started

♦ AD/Advantage MANTIS 2.8.x Installation and Startup
OpenVMS/UNIX, P39-0027*

General use

♦ AD/Advantage MANTIS Facilities OpenVMS/UNIX, P39-1300*

♦ AD/Advantage MANTIS Language OpenVMS/UNIX, P39-1310

♦ AD/Advantage MANTIS Messages and Codes OpenVMS/UNIX,
P39-1330*

♦ AD/Advantage MANTIS Application Development Tutorial
OpenVMS/UNIX, P39-1340

♦ AD/Advantage MANTIS SUPRA SQL Programming OpenVMS/UNIX,
P39-1345

♦ AD/Advantage MANTIS Rdb Programming UNIX, P39-1350

♦ AD/Advantage MANTIS Oracle Programming UNIX, P39-1355

Manuals marked with an asterisk (*) are listed twice because you use
them for different tasks.

About this book

MANTIS SUPRA SQL Programming OpenVMS/UNIX xv

Master User tasks

♦ AD/Advantage MANTIS Facilities OpenVMS/UNIX, P39-1300*

♦ AD/Advantage MANTIS Administration OpenVMS/UNIX, P39-1320

♦ AD/Advantage MANTIS 2.8.x Installation and Startup
OpenVMS/UNIX, P39-0027*

Manuals marked with an asterisk (*) are listed twice because you use
them for different tasks.

Educational material
MANTIS educational material is available from your regional Cincom
education department.

About this book

xvi P39-1345-00

MANTIS SUPRA SQL Programming OpenVMS/UNIX 17

MANTIS SQL support overview

MANTIS is an application development system for developing, testing,
executing, and documenting applications interactively. MANTIS SQL
Support is an extended version of MANTIS. It enables you to create
MANTIS applications that access database systems with SQL.

The presence of MANTIS SQL Support does not affect nonSQL MANTIS
applications. MANTIS SQL Support programs can thus run side by side
or in conjunction with nonSQL MANTIS programs, with neither affecting
the other.

You embed SQL statements in a MANTIS application program as
standard MANTIS comments. As MANTIS SQL Support encounters
each SQL statement, it transparently prepares it for execution and
executes it. The embedding of SQL in MANTIS looks similar to the
preprocessor output for SQL statements embedded in other host
languages such as COBOL.

Chapter 1 MANTIS SQL support overview

18 P39-1345-00

Precede each SQL statement with an EXEC_SQL statement and follow it
with an END statement, as shown below. The vertical bar (|) is the
MANTIS comment character. MANTIS automatically sets the indentation
level (number of preceding periods for the EXEC_SQL structure).
4580 TEXT EMP_NAME(30)

4590 X=N*RATE

4600 EXEC_SQL

4610 .| SELECT EMPLNAME

4620 .| INTO :EMPL_NAME

4630 .| FROM EMPLOYEE.TABLE

4640 .| WHERE EMPLNAME="SMITH"

4650 END

4660 DO CLEAN_UP

MANTIS variables in SQL statements are called host variables.
Syntactically, a colon always precedes a host variable in an SQL
statement. An input host variable is a MANTIS variable passed to SQL
and is used to select, insert, delete, or update data. A MANTIS variable
which receives data from the database is called an output host variable.
Host variables are also used as parameters of the SQL statements.
Optionally, you can specify an indicator variable along with a host
variable. The database system sets the indicator variable to indicate null
values or to signal that a value was truncated. “Embedding SQL
statements in MANTIS programs” on page 25 describes embedding SQL
statements in MANTIS programs.

Software requirements for MANTIS SQL support

MANTIS SUPRA SQL Programming OpenVMS/UNIX 19

Software requirements for MANTIS SQL support
MANTIS SQL Support runs under Open/VMS Release 6.2 and above
and runs against SUPRA Server database Release 2.8 and above.
System maintenance information is provided in “System maintenance” on
page 21.

Differences between SQL in MANTIS and SQL in COBOL
SQL in MANTIS SQL Support is essentially the same as its
implementations in third-generation languages, such as FORTRAN and
COBOL. (For convenience, in MANTIS documentation these
implementations are generalized as “SQL in COBOL.”) Some differences
do exist between MANTIS SQL Support and SQL in COBOL, mostly due
to the interpretive, rather than compiled, nature of MANTIS. These
differences are noted in the appropriate chapters of this manual and are
summarized in “Differences: MANTIS SQL support versus SQL in
COBOL; MANTIS versus SQL” on page 93. In brief, they are as follows:

♦ In the SQL WHENEVER statement: WHENEVER settings may have
different effects when used with conditional statements than they
would in SQL in COBOL due to the interpretive nature of MANTIS.

♦ The GOTO clause is replaced by a standard MANTIS DO statement,
and STOP is replaced by FAULT.

♦ The default for the condition SQLERROR is FAULT; in SQL in
COBOL, the default is CONTINUE.

♦ WHENEVER settings may have different ranges of applicability than
they would in SQL in COBOL.

♦ SQLCA elements are accessed through the SQLCA function.

♦ Elements in SQLDAs are accessed through the SQLDA function.

♦ In a MANTIS SQL Support application, messages come from three
sources: the MANTIS nucleus, MANTIS SQL Support, and the
database system. For explanations and actions for MANTIS SQL
Support messages, refer to AD/Advantage MANTIS Facilities
OpenVMS/UNIX, P39-1300.

Chapter 1 MANTIS SQL support overview

20 P39-1345-00

Logical names
In this manual, the term logical name refers to an identifier or variable
which stands for another name or value.

In MANTIS for OpenVMS, the logical names used by MANTIS
correspond directly to OpenVMS logical names.

In MANTIS for UNIX, logical names are implemented as environment
variables. You must ensure that any shell variables you want to affect
MANTIS are exported or inherited into the environment in which MANTIS
is executing.

Static and dynamic SQL
A MANTIS SQL Support application can be either static or dynamic. In a
static application, all SQL statements are defined before run time. In a
dynamic application, SQL statements are not defined until run time; they
are specified during program execution.

Security
Security in MANTIS SQL Support is handled solely through the database
system and MANTIS. Make sure that users have authorized access to
the views they require.

MANTIS SUPRA SQL Programming OpenVMS/UNIX 21

System maintenance

The following considerations assume that you have installed MANTIS. If
you are installing MANTIS or MANTIS SQL Support, refer to
AD/Advantage MANTIS Administration OpenVMS/UNIX, P39-1320, and
AD/Advantage MANTIS 2.8.x Installation and Startup OpenVMS/UNIX,
P39-0027. This supplements those publications.

As the Master User, you have certain facilities and information that are
available to you alone. When you sign on as Master User, your Facility
Selection menu appears as shown in the following screen illustration.

M A N T I S

FACILITY SELECTION

Run A Program 1 Transfer Facility 12
Display A Prompter 2 Edit MANTIS Messages 13
Design A Program 3 Directory Facility 14
Design A Screen 4 Universal Export Facility .. 15
Design A File Profile 5 Update Shared Entity List .. 16
Design A Prompter 6 Update Language Codes 17
Design A User Profile 7 MANTIS Maintenance 18
Design An Interface 8 Spectra 19
Design An Ultra File View .. 9 Search Facility 20
Design An External File View 10 List of Current MANTIS Users 21
Sign on as Another User...... 11 MANTIS Security Patch Info .. 22

Exit MANTIS................CANCEL

: :

Chapter 2 System maintenance

22 P39-1345-00

MANTIS SQL options
Two MANTIS options affect SQL support: SQLSSNINC and
SQLVARINC. For information on these options, refer to AD/Advantage
MANTIS Administration OpenVMS/UNIX, P-39-1320.

Update User Profile
The MANTIS User Profile contains a field in which you specify the default
SQL DBTYPE. SUPRA Server, Rdb, or Oracle can be specified in this
field.

The default DBTYPE sets the user’s current DBTYPE when the user
signs on to MANTIS. The current DBTYPE always determines which
SQL database system MANTIS uses.

The current DBTYPE can be changed at any time by the MANTIS
EXEC_SQL and SQLCA statements.

Not all DBTYPEs are supported on all platforms. For example, Rdb/VMS
only runs in the OpenVMS environments.

Signing on

MANTIS SUPRA SQL Programming OpenVMS/UNIX 23

Signing on
Sign-on to the SUPRA DRDM can be performed explicitly or implicitly.
Explicit sign-on to SUPRA occurs through the SQL CONNECT statement
as shown below:

[]timeoutlock
variablehost

password
variablehost
nameuser

/ BY IDENTIFIED CONNECT
�
�
�

�
�
�

−�
�
�

�
�
�

−
−

Both lock and timeout are extensions to the standard SQL CONNECT
statement.

Implicit sign-on occurs when there is no CONNECT statement and when
the first SQL statement is executed. MANTIS supports three logical
names that provide information for the implicit sign-on. The three logical
names are:

♦ MANTIS_SQL_USER = “SQL-user-name”

♦ MANTIS_SQL_PASS = “SQL-user-password”

♦ MANTIS_SQL_DBNAME = “SQL-data-base-name”

If the MANTIS_SQL_ * logicals do not cause a successful CONNECT,
then the native implicit CONNECT (using the associated RVX logicals) is
attempted. If there are no logical names, MANTIS does not connect to
the SUPRA DRDM and issues a fault message. You may want to use
SQLCA(“SQLCODE”) to find the cause of the failure.

If the SUPRA session is already connected when an SQL CONNECT is
issued, MANTIS will do an implicit COMMIT WORK RELEASE before
reconnecting.

Refer to your SUPRA Server documentation for more information on
using the SQL CONNECT statement.

OpenVMS consideration

♦ The MANTIS logical MANTIS_SUP_IF must be defined in order to
connect to the SUPRA SQL database. This logical is defined in the
MANTIS_CLASS_XXXX_INIT.COM procedure, where XXXX is the
class name.

Chapter 2 System maintenance

24 P39-1345-00

MANTIS SUPRA SQL Programming OpenVMS/UNIX 25

Embedding SQL statements in
MANTIS programs

This chapter describes the rules you must follow when embedding SQL
statements in a MANTIS program. It also explains how to reference host
variables and MANTIS entities, and how the database system converts
data values between SQL and MANTIS. A general working knowledge of
MANTIS, of SUPRA, and of SQL is assumed. For more information on
MANTIS language conventions, refer to AD/Advantage MANTIS
Language OpenVMS/UNIX, P39-1310.

Chapter 3 Embedding SQL statements in MANTIS programs

26 P39-1345-00

Embedding rules
You embed SQL statements in a MANTIS application program as
standard MANTIS comments (preceded by a vertical bar). Standard SQL
syntax rules apply. Each SQL statement is bracketed with an
EXEC_SQL-END block, as shown below. As the examples show,
EXEC_SQL causes the statements that follow it to be indented.

Follow these rules when embedding SQL statements in a MANTIS
application program. Standard rules for using MANTIS comments apply.

♦ Only one SQL statement can be within an EXEC_SQL-END block.

..EXEC_SQL Invalid: Three SQL statements

...| OPEN C1 in the EXEC_SQL-END block.

...| FETCH C1 INTO ...

...| CLOSE C1

..END

♦ Any text between EXEC_SQL and END must be part of an SQL
statement and must be preceded by a vertical bar (|). Once MANTIS
SQL Support encounters a vertical bar, the rest of the physical line is
considered a single SQL statement. Other MANTIS statements or
comments are not permitted.

..EXEC_SQL Invalid: A statement other than a

...| OPEN C1 comment is between EXEC_SQL and

...OPENED = TRUE END.

...END

...EXEC_SQL Invalid: A MANTIS statement is

...| OPEN C1:OPENED=TRUE appended to a valid SQL statement.

..END

..EXEC_SQL Invalid: A comment is appended

...| OPEN C1:|EMPLOYEE CURSOR to a valid SQL statement.

..END

Embedding rules

MANTIS SUPRA SQL Programming OpenVMS/UNIX 27

♦ A colon within an EXEC_SQL-END block identifies a MANTIS host
variable, not a new statement.
..EXEC_SQL

...| FETCH C1 INTO :A C1 is an SQL entity;

..END A is a MANTIS host variable

♦ An SQL statement in an EXEC_SQL-END block can be broken into
multiple lines. MANTIS reads the text on two consecutive comment
lines in an EXEC_SQL-END block as if it were separated by a single
blank (one statement).

..EXEC_SQL is equivalent to ..EXEC_SQL

...| OPEN ...| OPEN C1

...| C1 ..END

..END

SQL text literals (characters between apostrophes) may not span lines.

♦ In an SQL statement, multiple blanks at the beginning or end of an
SQL statement, or even spaces between words on the same line, are
treated as a single blank.

..EXEC_SQL is equivalent to ..EXEC_SQL

...| OPEN C1 ...| OPEN C1

..END ..END

 Multiple spaces between words in statements are compressed.

..EXEC_SQL is equivalent to ..EXEC_SQL

...| ...| OPEN C1

...| OPEN ..END

...| C1

...|

..END

Chapter 3 Embedding SQL statements in MANTIS programs

28 P39-1345-00

♦ An SQL statement “attached” to an EXEC_SQL statement with a
colon (the MANTIS statement-separator character) is part of the SQL
statement; it is considered to be within the EXEC_SQL-END block.

..EXEC_SQL:| SELECT ... Valid

...| FROM

...| WHERE

..END

♦ A MANTIS statement on the same line as the END in an
EXEC_SQL-END block is not executed. This rule is consistent with
the rules for using END with MANTIS IF, WHILE, FOR, WHEN, and
UNTIL statements. MANTIS comments are permitted.
..EXEC_SQL

...| OPEN C1

..END:OPENED=TRUE “OPENED=TRUE” is disregarded

..EXEC_SQL

...| OPEN C1

..END:| C1 IDENTIFIES TAG FILE ENTRIES A valid comment

Using host variables

MANTIS SUPRA SQL Programming OpenVMS/UNIX 29

Using host variables
A MANTIS variable used to provide input or receive output from the
database is called a host variable. A host variable is identified within an
SQL statement by a colon prefix. In the following example, EMPL is a
host (MANTIS) variable.
..SMALL EMPL

..EXEC_SQL

...| FETCH CURSOR1 INTO :EMPL

..END

Like other MANTIS variables, host variables are implicitly declared when
they are first used if they are not explicitly declared before appearing in
the EXEC_SQL-END block. Any previously undefined MANTIS variable
referred to in an SQL statement is automatically declared as a MANTIS
BIG variable. (A MANTIS BIG variable is a numeric floating-point
variable 16 digits long.)

..BIG A is equivalent to ..EXEC_SQL

..EXEC_SQL ...| FETCH C1 INTO :A

...| FETCH C1 INTO :A ..END

..END

If necessary, you may explicitly declare a host variable as a type other
than BIG.

Chapter 3 Embedding SQL statements in MANTIS programs

30 P39-1345-00

Referencing values in a MANTIS array
A host variable can be an item in a MANTIS array. You can use
arithmetic expressions and MANTIS functions to specify subscripts of
host variables. MANTIS rules apply to subscripting, even though the
subscript is in an SQL statement. In the example below, all text following
the colon must conform to MANTIS syntax. For example:
..SMALL EMPL (20,40)

..EXEC_SQL

...| FETCH ENTRY1 INTO :EMPL(1+N,INT(T))

..END

Only the host variable, not other MANTIS variables referred to in
subscript expressions, can be prefixed with a colon. In the example
above, the variables N and T are not prefixed with a colon, but are
assumed to be MANTIS variables.

You may use host variables in SQL expressions. Each host variable
must be preceded by a colon, as shown in the following example:
..EXEC_SQL

..| INSERT INTO OWNER.TAB (COLA)

..| VALUES (:SALARY * 1.1)

..END

MANTIS versus SQL data types
When the database system transfers data to or from a host variable,
MANTIS causes the database system to automatically convert the data’s
type from an SQL type to a MANTIS type, and vice versa. See “Data
conversion between MANTIS SQL support and the SUPRA database” on
page 32 for a summary of how types are converted. Be sure to note that
truncation, overflow, and rounding may occur.

Indicator variables

MANTIS SUPRA SQL Programming OpenVMS/UNIX 31

Indicator variables
Optionally, you can include an indicator variable along with a host
variable in SQL statements.

As its name implies, the indicator variable indicates whether the host
variable contains a real value or is NULL or MISSING. Indicator variables
are interpreted as follows:

Value Meaning
 =0 The host variable is a defined value, no error.
<0 The host variable is a NULL or MISSING value.
>0 This contains the original column length due to a truncated

value.

An indicator variable is prefixed with a colon and immediately follows the
corresponding host variable (or subscript expression). In the following
example, EMPLIV and NAMEIV are indicator variables.
..EXEC_SQL: | SELECT EMPLNO, EMPLNA

...| INTO :EMPL(15,3):EMPLIV, :NAME:NAMEIV

...| FROM EMPLOYEES WHERE DEPT = 17

..END

Like host variables, indicator variables can be explicitly or implicitly
defined. Only numeric variables can be used as indicator variables. The
default in implicit declaration is a MANTIS BIG variable. Variable types
are described in “Data conversion between MANTIS SQL support and the
SUPRA database” on page 32. SUPRA SQL interprets indicator values
as integers whereas they may be specified as floating point values in
MANTIS. Therefore a value of -0.9 will not specify a NULL value
because it is converted to zero before being interpreted.

When reading data from the database (SELECT/FETCH), you should
supply indicator variables for any columns that may contain NULL values.

If the column is NULL, the value of the host variable is not defined.
Check the value of the indicator before examining the host variable data.

Chapter 3 Embedding SQL statements in MANTIS programs

32 P39-1345-00

Data conversion between MANTIS SQL support and the
SUPRA database

In MANTIS SQL Support, data is always manipulated as a MANTIS data
type. When a data value is transferred between MANTIS and SQL,
MANTIS causes the database system to automatically convert its data
type to a MANTIS-compatible data type (if the host variable and the SQL
variable are of compatible types). The following table lists permissible
data conversions. Check the notes for information about overflow,
truncation, and rounding. Any combination of MANTIS and SQL data
types not listed in the following table will result in a run-time error.
Truncation is indicated through the SQLWARN elements in the SQLCA
and indicator variables, if used.

Numeric rounding and overflow conditions depend on the precision of the
column specified in the table definition. While overflow is a SUPRA
ERROR condition, rounding may or may not be flagged as a SUPRA
WARNING condition, depending on the data types involved.

SQL data
type

MANTIS data
type

Possible conditions
MANTIS to SQL

Possible conditions SQL
to MANTIS

0 (Fixed) INTEGER Overflow Rounding, Overflow
 SMALL Rounding, Overflow Rounding
 BIG Rounding, Overflow Rounding
 DECIMAL Rounding, Overflow Rounding, Overflow
1 (Float) INTEGER Rounding Rounding, Overflow
 SMALL Rounding Rounding
 BIG Rounding Rounding
 DECIMAL Rounding, Overflow Rounding, Overflow
2 (Character) TEXT Truncation Truncation
4 (Date) TEXT Truncation Truncation
5 (Time) TEXT Truncation Truncation
6 (String) TEXT Truncation Truncation

MANTIS SUPRA SQL Programming OpenVMS/UNIX 33

Programming considerations

To use MANTIS SQL Support, you simply embed the appropriate SQL
statements in your MANTIS application program as standard MANTIS
comments, enclosed in EXEC_SQL-END blocks. As MANTIS SQL
Support encounters each SQL statement, it prepares it for execution and
then executes it, in effect performing the same steps (preprocess,
compile, link, and load before the run) that are executed with a COBOL
program that contains embedded SQL statements. However, unlike
COBOL, the MANTIS program can be modified, including the SQL
statements, and then immediately re-executed by issuing the RUN
command.

The fact that MANTIS SQL Support is interpretive has several
implications for program design, as you will see in this chapter. Before
you begin writing MANTIS SQL Support programs, you should be aware
of these implications and other programming considerations. Briefly, they
are as follows:

♦ MANTIS stores an EXEC_SQL-END block as a single line of text
internally and associates the line number of the last program line in
the block with this single line. There are minor distinctions between
bound and unbound versions of a program.

♦ The scope of a cursor or SQL statement is local. Since both are SQL
entities and not MANTIS entities, you cannot pass them as
parameters or use them in nonSQL MANTIS statements.

♦ The WHENEVER statement in MANTIS SQL Support differs slightly
from the WHENEVER statement used in other languages. It has
different syntax, defaults, and possibly effects.

♦ Elements in the SQLCA are accessed through a MANTIS function
called SQLCA, rather than as elements of an SQLCA data structure.

Chapter 4 Programming considerations

34 P39-1345-00

♦ The effects of COMMIT and ROLLBACK in SUPRA differ slightly
from COMMIT and RESET in MANTIS. In SUPRA, COMMIT
commits only SQL, and only for the specified SQL session. In
MANTIS, COMMIT and RESET commit everything (including SQL).

♦ Error messages can come from different sources: MANTIS SQL
Support, the MANTIS nucleus, and the database system.

Each of these topics is discussed in detail in this chapter.

Running an EXEC_SQL-END block

MANTIS SUPRA SQL Programming OpenVMS/UNIX 35

Running an EXEC_SQL-END block
The EXEC_SQL-END block may continue over several program lines,
but when executed it internally becomes a single line of text to MANTIS
SQL Support. If you enter the following block:
10 EXEC_SQL

20 | SELECT * FROM table-name

30 | WHERE col-name > :MIN_VALUE

40 END

you can execute it using the RUN command by entering “RUN 10.”
MANTIS stores the block as a single line of text and associates it with the
last program line in the SQL block, in this example, line 40. Therefore, if
MANTIS encounters an error in the program block, it returns the error
message and displays line 40.

If you bind the program, however, MANTIS stores the block as a single
line and associates it with the line number of the last SQL statement, in
this case line 30. If you want to run the bound block using the RUN
command, you must enter “RUN 30.” If MANTIS encounters an error in
the program block, it returns the error message and displays line 30.

Chapter 4 Programming considerations

36 P39-1345-00

The scope of cursors, statements, and SQLDAs
SQL statement names are MANTIS entities and not SQL entities. Hence,
their scope is limited strictly to the program or external subprogram in
which they are PREPARED.

SQL cursors are SQL entities and MANTIS entities. Cursors are global
to SUPRA but local to a MANTIS program context. A cursor is
synonymous with the name of a result table and as such may be used in
FETCH statements when not even DECLARED or OPENED explicitly.

Because MANTIS interprets cursor names differently in different
statements, a cursor name can be DECLARED and OPENED in one
program and used in a FETCH statement in an external subprogram.
However, you cannot OPEN a cursor which is DECLARED in a calling
program context because MANTIS uses the cursor name to link the
OPEN statement to the DECLARE statement and cursor names are local
in scope from MANTIS’ point of view.

The following examples illustrate this point:

Allowed Not Allowed

ENTRY SUB
EXEC SQL:| FETCH C1 ...
END
:

EXIT

EXEC_SQL:| DECLARE C1 ...
END
DO SUB

ENTRY SUB
EXEC_SQL:| OPEN C1
END
EXEC_SQL:| FETCH C1
END
:

EXIT

EXEC_SQL:| DECLARE C1 ...
END
EXEC_SQL:| OPEN C1
END
DO SUB

Connection to the SUPRA database and multiple session support

MANTIS SUPRA SQL Programming OpenVMS/UNIX 37

Connection to the SUPRA database and multiple session
support

MANTIS supports explicit and implicit database connection, as described
“Signing on” on page 23 .

Multiple session support is a feature that allows you to connect up to
eight SUPRA databases concurrently. You can specify the name of the
SUPRA database in your MANTIS program in one of three ways:

♦ SQLCA (“DBNAME”)=“SUPRA”—See “The SQLCA in MANTIS SQL
support” on page 47.

♦ EXEC_SQL:| SET DBNAME dbname-spec—See “The SQL SET
DBNAME statement” on page 46.

♦ EXEC_SQL (“SUPRA” [, session-no])—See “The MANTIS
EXEC_SQL statement” on page 39.

The specified DBNAME will be used on the next implicit or explicit
database connection.

Having specified the database name, you can then specify the SUPRA
session number which is associated with a database connection. The
session number can only be specified on an EXEC_SQL statement.

Chapter 4 Programming considerations

38 P39-1345-00

Disconnection from the SUPRA database
MANTIS disconnects from the SUPRA database by executing the SQL
COMMIT WORK RELEASE statement. This can be performed explicitly
by a MANTIS program or implicitly by the MANTIS nucleus.

Possible causes of disconnection are:

♦ EXEC_SQL:| COMMIT [WORK] RELEASE

♦ EXEC_SQL:| FINISH

♦ MANTIS main program context cleanup

♦ A MANTIS CHAIN statement if the MANTIS option for database sign-
off on a CHAIN statement is enabled.

MANTIS main program cleanup occurs in the following circumstances:

♦ The current TEST program context is released in Program Design as
the result of a NEW, LOAD, EDIT, or RUN command, or when the
Program Design Facility is exited.

♦ When a main program terminates in RUN mode; in other words,
when not under the control of Program Design.

The MANTIS EXEC_SQL statement

MANTIS SUPRA SQL Programming OpenVMS/UNIX 39

The MANTIS EXEC_SQL statement
The common usage of this statement has already been shown in the
examples in this manual. This section discusses the use of EXEC_SQL
for multiple session support.

[]()[][]

END

 | : , EXEC_SQL

�
�
�

�

�

�
�
�

�

�

continued statement-sql

statement-sqlexp2exp1

exp1

Description Specify the database subsystem type (DBTYPE) or the SUPRA SQL
CONNECT session number when multiple SUPRA database connections
are required.

Format A text expression equal to “SUPRA,” “RDB,” or “ORACLE” or a numeric
expression equal to a session number in the range of one through eight.

Consideration If it is a numeric session number, the current DBTYPE must be SUPRA.

exp2

Description Optional. Specify connect session number when exp1 is used to specify
SUPRA or ORACLE as the DBTYPE.

Format A numeric expression equal to a session number in the range of 1
through 8.

Chapter 4 Programming considerations

40 P39-1345-00

General considerations

♦ Multiple session support refers to the ability to connect to different
SQL databases concurrently, for example, to SUPRA and Rdb/VMS
databases. It also refers to the ability to have multiple connections to
some databases (for example, SUPRA), but you can only be
connected to one Rdb/VMS database at a time.

♦ Another element of the EXEC_SQL statement is the current
DBTYPE, defined as the default used when one is not specified in an
EXEC_SQL statement. The current DBTYPE can be and, once set,
remains in place until either:

- Explicitly changed by another EXEC_SQL or SQLCA statement

- Implicitly changed by signing on to another MANTIS user

♦ The Master User can specify your default DBTYPE in your MANTIS
user profile. If this function is not performed by the Master User,
MANTIS uses SUPRA as the default.

Not all DBTYPEs are supported on all platforms. For example, Rdb/VMS
support is restricted to the OpenVMS environment.

The SQL WHENEVER statement

MANTIS SUPRA SQL Programming OpenVMS/UNIX 41

The SQL WHENEVER statement
The WHENEVER statement in MANTIS SQL Support differs from that of
SQL in COBOL in four ways:

♦ It is interpretive, not compiled.

♦ GOTO is replaced by DO, and STOP is replaced by FAULT.

♦ The default for SQLERROR is FAULT, not CONTINUE.

♦ FAULT is an extra WHENEVER action that allows program
termination upon the specified condition.

The syntax of the MANTIS SQL Support WHENEVER statement is
shown below. Note that any action (DO, FAULT, or CONTINUE) can be
selected for any condition (SQLERROR, SQLWARNING, NOT FOUND,
SQLEXCEPTION).

WHENEVER condition action

Chapter 4 Programming considerations

42 P39-1345-00

condition

Description Required. Indicate the condition you want to check for.

Options Valid conditions are SQLERROR, SQLWARNING, NOT FOUND, and
SQLEXCEPTION. Each is explained in more detail below.

SQLERROR

Description Optional. Specifies that the database returned an error
code as the result of an SQL statement; SQLCODE < 0.

Default action FAULT

SQLWARNING

Description Optional. Indicates that SQLCA (“SQLWARN0”) = “W” and
that SQLCODE = 0.

Default action CONTINUE

NOT FOUND

Description Optional. Indicates that the database cannot find a row to
satisfy your SQL statement, or there are no more rows to
fetch (SQLCODE = 100).

Default action CONTINUE

SQLEXCEPTION

Description Optional. Handles SQL timeout error conditions. Timeouts
can be configured for database locks as well as database
access.

Default action CONTINUE

The SQL WHENEVER statement

MANTIS SUPRA SQL Programming OpenVMS/UNIX 43

action

Description Required. Specify the action to be taken when the named condition is
met.

Options Valid actions are DO entry-name [(parms)], FAULT, and CONTINUE.

DO entry-name[(parms)]

Description Optional. Indicates a standard MANTIS DO (internal or
external) and corresponds to the WHENEVER-GOTO SQL
statement in SQL in COBOL. WHENEVER-DO transfers
control to the specified internal routine or external program
whenever the named condition is encountered.

Considerations

♦ WHENEVER-DO can transfer control to an internal
routine or external program, which in turn can contain
any MANTIS logic, including CHAIN, EXIT, or STOP
statements. The current values of any DO arguments
at the time of the EXEC_SQL that caused the DO to
occur are passed to the named subroutine. The
subroutine EXIT returns control to the next statement
following the EXEC_SQL that caused the DO to occur.

♦ The WHENEVER-DO action resembles the existing
functionality of the SET TRAP statement in MANTIS. If
the DO portion of a WHENEVER-DO contains an
error, MANTIS returns a MANTIS error message
associated with the DO statement, not an SQL
WHENEVER-type error. MANTIS displays the line in
error in the subroutine. The WHENEVER statement
may be outside of the current execution path.
Remember that DO is executed as a result of an SQL
statement raising the condition with which the DO
action is associated.

Chapter 4 Programming considerations

44 P39-1345-00

FAULT

Description Optional. Terminates execution of the program and
displays the generated database system message in the
form of a MANTIS fault (error) message.

Only if WHENEVER condition FAULT is in effect will
MANTIS SQL Support intercept the specified condition and
fault the MANTIS program. Remember that FAULT is the
default action for SQLERROR.

CONTINUE

Description Optional. Permits program execution to continue without
interruption when the named condition occurs. Your
program should then check SQLCODE for the results of
each EXEC_SQL.

The following table provides a quick reference for the WHENEVER
conditions and default actions.

Condition Default action
SQLERROR FAULT
SQLWARNING CONTINUE
NOT FOUND CONTINUE
SQLEXCEPTION CONTINUE:

Example

00200 |

00210 | SET 'WHENEVER' SETTINGS TO DESIRED VALUES

00220 |

00230 EXEC_SQL:| WHENEVER SQLERROR DO DO_ROUTINE(PARM1,PARM2,PARM3)

00240 END

00250 EXEC_SQL:| WHENEVER SQLWARNING FAULT

00260 END

00270 EXEC_SQL:| WHENEVER NOT FOUND CONTINUE

00280 END

00290 EXEC_SQL:| WHENEVER SQLEXCEPTION CONTINUE

00300 END

The SQL WHENEVER statement

MANTIS SUPRA SQL Programming OpenVMS/UNIX 45

Declarative versus interpretive WHENEVER statements
When SQL is embedded in COBOL, WHENEVER is a declarative
statement. It is processed when the program is precompiled, not at
execution time. Thus, in a COBOL program the current WHENEVER
setting is determined by sequential position. By setting we mean the
combination of condition and action that the WHENEVER statement
specifies. For example, in the statement:
WHENEVER SQLWARNING CONTINUE

SQLWARNING is the condition and CONTINUE is the action. Together,
they make up the setting. (Remember that a WHENEVER setting is
actually an accumulation of four settings: one each for the conditions
SQLEXCEPTION, SQLERROR, SQLWARNING and NOT FOUND.)

In contrast, in MANTIS SQL Support, the last-executed WHENEVER
statement is in effect regardless of its relative sequential position in the
program. This difference is important when a WHENEVER is used with
conditional statements. The following figure illustrates the different
effects of a declared versus interpreted WHENEVER statement. C
denotes a condition and 1 and 2 denote actions. The same
considerations apply to FOR, UNTIL, WHEN, and IF structures in
MANTIS.

* However, if the WHILE condition is not true
the first time line 40 is executed, C1 remains
in effect through line 80 because line 50 was
not executed.

The first time statement 40 is executed,
the setting is C1; thereafter it is C2.

Since the setting is established before
run time, it remains unchanged
regardless of whether lines 50-70 are
executed.

Setting
in effect

C1
|

C1
C2
C2
C2
C2

Setting
in effect

SQL in COBOL
pseudocode:

20 WHENEVER C1
"

40 WHILE condition
50 WHENEVER C2

"
70 ENDWHILE
80 EXEC_SQL

MANTIS SQL Support
pseudocode:

20 WHENEVER C1
"

40 WHILE condition
50 WHENEVER C2

"
70 ENDWHILE
80 EXEC_SQL

C1
|

C2 FIRST, THEN C2*
C1 or C2*
C1 or C2*
C1 or C2*
C1 or C2*

Chapter 4 Programming considerations

46 P39-1345-00

Scope of the WHENEVER statement
The scope of the WHENEVER statement is the current MANTIS
DOLEVEL and every EXEC_SQL until a new WHENEVER is executed.
If the default WHENEVER settings are not desired, WHENEVER must be
issued in each externally done program.

The SQL FINISH statement
The FINISH statement is provided for compatibility with MANTIS SQL
support for Rdb/VMS. It is a request to disconnect from the specified (or
default) SUPRA session. It is functionally equivalent to the COMMIT
WORK RELEASE statement.

The format for using the FINISH statement is:

FINISH

The SQL SET DBNAME statement
This statement provides an alternate way to change the setting of
SQLCA(“DBNAME”). It allows you to specify the SUPRA database
names to use in all subsequent connects. Refer to the section on
SQLCA Elements for more information.

The format for using the SET DBNAME statement is:

�
�
�

�
�
� −

parameter
namedatabase

:
''

 DBNAME SET

The SQLCA in MANTIS SQL support

MANTIS SUPRA SQL Programming OpenVMS/UNIX 47

The SQLCA in MANTIS SQL support
In SQL in COBOL, the SQLCA (SQL Communications Area) is a data
structure. An SQL in COBOL application accesses elements in the
SQLCA as items of data. In MANTIS SQL Support, the SQLCA function
and statement perform the complementary operations of reading and
writing elements of the SQLCA structure. All standard SQLCA
capabilities are provided.

SQLCA syntax
The syntax of the built-in SQLCA function (read) is shown first; the
SQLCA statement (write), second, below.

sqlca-element = SQLCA(element_name)

SQLCA(element_name) = sqlca-element-value

sqlca-element

Description Required. Specify a MANTIS variable or array element to receive the
value of your SQLCA element.

Format Valid MANTIS variable reference: a scalar variable, a subscripted array,
or a substring reference.

Consideration The data type of sqlca-element must be compatible with the data type of
the SQLCA element referenced in the SQLCA function.

Chapter 4 Programming considerations

48 P39-1345-00

element_name

Description Required. Is or contains the name of the element to be returned or read.

Format Valid SQLCA element, as listed in “SQLCA elements” on page 49

Considerations

♦ Quotation marks (“”) are required when element_name is specified
as a text literal. For example:
.IF SQLCA("SQLCODE")<ZERO

..DO ERROR_CONDITION_ROUTINE

.END

♦ A text variable containing the element_name is also valid. For
example:
.CACODE="SQLCODE"

.IF SQLCA(CACODE)<ZERO

..DO ERROR_CONDITION_ROUTINE

.END

Because the SQLCA is a built-in function, it is not declared. An
INCLUDE SQLCA statement is not required or recommended.

sqlca-element-value

Description Required. Specify a value to be assigned to your SQLCA element.

Format Valid MANTIS expression or text literal of the appropriate type
(dependent upon the element type)

Consideration The data type of sqlca-element-value must be compatible with the data
type of the SQLCA element referenced in the SQLCA statement.

The SQLCA in MANTIS SQL support

MANTIS SUPRA SQL Programming OpenVMS/UNIX 49

SQLCA elements
The following table lists SQLCA elements, the compatible MANTIS
variable type, and usage notes.

Element MANTIS variable* Usage notes

DBTYPE TEXT (6) Fully supported
DBNAME TEXT (64) Fully supported
SQLCAID TEXT (8) Read only
SQLCABC NUMERIC Read only
SQLCODE NUMERIC
SQLERRML NUMERIC Read only
SQLERRMC TEXT (70)
SQLERRP TEXT (8)
SQLERRDn NUMERIC n ranges from 1–6
SQLWARNn TEXT (1) n ranges from 0–F
SQLEXT TEXT (84) Read only

* If a data value is moved from an SQLCA element to a MANTIS variable of

shorter length (for example, an eight-character SQLCA element to a six-
character MANTIS variable), the right-most characters are truncated.

Remember that SQLCAID, SQLCABC, SQLERRML, and SQLEXT are
read-only. Although values can be written into the other elements, doing
so does not pass any information to the database. In addition, since
these elements are written to by the database, their contents may be
destroyed at each EXEC_SQL statement execution. See the following
discussion of SQLERRMC for more information.

For portable, nonvolatile MANTIS software, you should consider the
entire SQLCA structure as read-only.

Chapter 4 Programming considerations

50 P39-1345-00

Additional elements added to MANTIS SQL Support are:

DBTYPE The SQLCA (“DBTYPE”) statement allows you to specify
the database with which MANTIS SQL Support will
communicate. Specifies a one- to six-character text
value for the current DBTYPE, as explained in the
section on the EXEC_SQL statement. Allowed values
for DBTYPE are “SUPRA,” “RDB,” and “ORACLE.” All
EXEC_SQL statements executed will now access the
relational database implied by the DBTYPE, by default.

DBNAME Specifies a 1–64 character text value which becomes the
database name used in all subsequent connects. If you
do not specify a database name, MANTIS obtains it from
the translation of the logical name
MANTIS_SQL_DBNAME.

SQLERRMC The SQLERRMC element and associated length
parameter returns the error message text for the current
SQLCODE. For example:
EXEC_SQL
...
END

IF SQLCA ("SQLCODE")<0

.SHOW SQLCA("SQLERRMC");

END

 SQLCA (“SQLCODE”) is reset to zero at an implicit
COMMIT. Any solicited input while MANTIS has
COMMIT ON causes an implicit COMMIT. MANTIS will
always issue an implicit COMMIT at any terminal read
operation, unless the program or user explicitly turns the
automatic COMMIT logic off with the COMMIT OFF
statement.

If, for some reason, your system administrator does not install the text of
SUPRA error messages, the following message will be displayed for all
database errors:
750 SQLERROR:nnnn:

In this message, the “nnnn” is the number for the SQL error.

COMMIT and ROLLBACK and MANTIS SQL support’s COMMIT and RESET

MANTIS SUPRA SQL Programming OpenVMS/UNIX 51

COMMIT and ROLLBACK and MANTIS SQL support’s
COMMIT and RESET

In MANTIS SQL Support, SQL’s COMMIT and ROLLBACK statements
have exactly the same effect on the database as the standard MANTIS
COMMIT and RESET statements. The use of an SQL COMMIT or
ROLLBACK does not imply a MANTIS COMMIT or RESET, but the use
of a MANTIS COMMIT or RESET does imply an SQL COMMIT or
ROLLBACK. Execution of an SQL COMMIT statement commits only
SQL, and only for the specified SQL session. MANTIS automatically
performs a COMMIT at terminal input.

SUPRA is very sensitive to the COMMIT. Care should be taken when
using COMMIT and RESET in embedded SQL applications, and the
following considerations should be kept in mind:

♦ MANTIS COMMIT and RESET functions also COMMIT/ROLLBACK
the current SQL transaction. Embedded SQL COMMIT and
ROLLBACK statements only affect the SQL database.

♦ MANTIS COMMIT is performed in the following circumstances:

- When MANTIS COMMIT statement is encountered.

- When any terminal input function (CONVERSE, OBTAIN, WAIT,
or MORE prompt) is encountered by any MANTIS program
(including Program Design when reading command lines), unless
COMMIT OFF has been specified.

- When MANTIS runs the main program cleanup, as outlined
above, the COMMIT is performed prior to database
disconnection.

♦ MANTIS RESET is performed in the following circumstances:

- When MANTIS RESET statement is encountered.

- When a MANTIS FAULT occurs, except for breakpoint faults.

Chapter 4 Programming considerations

52 P39-1345-00

♦ Beware of the effect of the terminal input request by Program Design
at this point. Your MANTIS program may go into a resource wait
state, trying to update a table that another user may be reading (via
SELECT).

♦ You must give careful consideration to the use of COMMIT and
RESET in your embedded SQL applications, as well.

If you are in Program Design, and have set a breakpoint, then a
RESET will not occur when the breakpoint is hit (the breakpoint is a
FAULT condition). However, unless you have done a COMMIT OFF,
an automatic COMMIT will occur when Program Design prompts you
for the next input line. Be aware that this can occur, as it could result
in the program behaving differently under breakpoints.

Error messages

MANTIS SUPRA SQL Programming OpenVMS/UNIX 53

Error messages
This section discusses the types of messages you may receive and how
they are displayed in MANTIS Program Design mode and at execution
time. You can receive messages from three sources: the MANTIS
nucleus, MANTIS SQL Support, and the database system.

When MANTIS encounters an error, it displays the fault message first,
then the statement where the error occurred and the text of that line.
Messages from the database system are prefaced with the three-
character code 750. A message from the database contains the
SQLCODE value and its associated text message. The format is:
750 SQLERROR:nnnn: ###...

Where nnnn is the three- or four-digit SQLCODE value and “###...” is the
message returned from the database.

For example:
750 SQLERROR:-803: INVALID NUMERIC INPUT PARAMETER

Would be returned from SUPRA if an SQLCODE indicating invalid string
constants was returned to the SQLCA and the WHENEVER SQLERROR
condition was set to FAULT.

For explanations and actions for all messages generated by MANTIS,
refer to AD/Advantage MANTIS Messages and Codes OpenVMS/UNIX,
P39-1330.

Chapter 4 Programming considerations

54 P39-1345-00

MANTIS SUPRA SQL Programming OpenVMS/UNIX 55

Dynamic SQL in MANTIS SQL support

This chapter discusses how dynamic SQL works in MANTIS SQL
Support. Dynamic SQL in MANTIS SQL Support differs somewhat from
dynamic SQL in other languages. If you’re new to dynamic SQL
programming, you may want to review this information.

An overview of dynamic SQL
Dynamic SQL is a method for executing SQL statements when data such
as SQL statements, tables, or column names is needed, but is not known
by the program before program execution begins. For example, if an
application requires a user to interactively enter an SQL statement at the
terminal during program execution, the application must use dynamic
SQL. The ISQL utility is an example of such an application.

Virtually any statement in a static application can also be executed
dynamically. The principal statements that enable you to execute SQL
statements dynamically are PREPARE, DESCRIBE, EXECUTE, and
EXECUTE IMMEDIATE. Alternate forms of DECLARE, OPEN, and
FETCH statements are used in dynamic SQL. Communication to and
from the database is done using these statements and an SQLDA data
structure. This structure consists of header elements and repeating
elements (each repeating element group is sometimes called SQLVAR).
The SQLDA contains metadata (e.g., data length and data type) about
the data going between your program and the database. The SQLDA can
be thought of as a representation and repository of the data being
transferred.

Chapter 5 Dynamic SQL in MANTIS SQL support

56 P39-1345-00

Programs using dynamic SQL must procedurally define data about the
SQL statements and host variables. In static SQL programs, the SQL
preprocessor determines this information. A single program can contain
either static SQL statements, dynamic SQL statements, or both.

Executing a statement dynamically
In general, to be executed dynamically, most SQL statements must be
prepared with a PREPARE statement and then executed with an
EXECUTE statement. If data is being retrieved, inserted, or updated, the
program must manipulate the SQLDA between preparation and
execution. This manipulation can include allocating and expanding an
SQLDA, retrieving metadata from SQL with the DESCRIBE statement,
and causing data transfer between SQL and MANTIS variables. The
code sequence examples included in this chapter illustrate how
dynamically executed SQL statements and the SQLDA work together in
dynamic routines.

Code sequence for dynamic SQL
The following code provides a sample SELECT and FETCH sequence for
dynamic SQL. Sample code for the SQLDA built-in statement and
function (described in “The SQLDA structure” on page 58) is also
included in this example.

SELECT statement with input parameters
50 TEXT DA:DA= "sqlda-name"

60 SQLDA(DA)=NEW

70 TEXT SELECT_STMT (250)

80 EXEC_SQL:| PREPARE stmt-name INTO sqlda-name FROM :SELECT_STMT

90 END

100 EXEC_SQL:| DECLARE cursor-name CURSOR FOR stmt-name

110 END

120 SQLDA(DA,"SQLHOSTVAR",I)=input-parameter:| I = 1 TO SQLDA(DA,"SQLN")

130 EXEC_SQL:| OPEN cursor-name USING DESCRIPTOR sqlda-name

140 END

An overview of dynamic SQL

MANTIS SUPRA SQL Programming OpenVMS/UNIX 57

FETCH statement with output parameters
70 EXEC_SQL:| FETCH cursor-name USING DESCRIPTOR sqlda-name

80 END

90 SHOW SQLDA(DA,"SQLHOSTVAR",I):| I = 1 TO SQLDA(DA,"SQLD")

Other statements with input parameters
30 TEXT UPDATE_STMT (250)

40 EXEC_SQL:| PREPARE stmt-name FROM :UPDATE_STMT

50 END

60 EXEC_SQL:| DESCRIBE stmt-name INTO sqlda-name

70 END

80 SQLDA(DA,"SQLHOSTVAR",I)=input-parameter:| I = 1 TO SQLDA(DA,"SQLN")

90 EXEC_SQL:| EXECUTE stmt-name USING DESCRIPTOR sqlda-name

100 END

The first SQLDA statement allocates the SQLDA. Next, the PREPARE
statement dynamically compiles the SQL statement. Then, the
DESCRIBE statement returns metadata about the results of the SQL
statement in the SQLDA. You may want to include the next SQLDA
statement to supply values for input host variables. The EXECUTE
statement tells the processor to execute the named statement. Finally,
you may include the SQLDA built-in function to transfer data from a host
variable.

Complete example code for dynamic insert, update, delete, and select
routines are in “Sample MANTIS SQL programs” on page 73, along with
their static equivalents.

Chapter 5 Dynamic SQL in MANTIS SQL support

58 P39-1345-00

The SQLDA structure
In dynamic SQL support, SQL communicates with your program via an
SQLDA (SQL Descriptor Area). An SQLDA is a data structure that holds
information about data (metadata) that is transferred between your
program and the database.

The following figure represents the structure of an SQLDA. The first four
elements are header elements; they occur once per SQLDA. The next
nine elements repeat once per data item. A data item is either one
column of an SQL table (output from SQL to your program) or the value
of a host variable (input to SQL from your program). The maximum
number of entries is 300. “SQLDA header elements” on page 64 and
“SQLDA repeating elements” on page 70 summarize header and
repeating elements.

SQLHOSTIND

SQLCOLTYPE

SQLCOLIO

SQLCOLFRAC

SQLHOSTVARTY

SQLCOLLENGTH

SQLHOSTVAR

SQLCOLMODE

SQLCOLTYPE

SQLCOLFRAC

SQLHOSTVARTY

SQLCOLIO SQLCOLMODE

SQLCOLLENGTH

SQLHOSTVAR

SQLHOSTIND

SQLCOLNAME

SQLDAID SQLMAX SQLN SQLD

SQLCOLNAME

1

1

1

1 1

1

1

1

1

2

2

2

2

2 2

2

2

2

Header
Elements

Repeating
Element

Repeating
Element

1

2

The SQLDA structure

MANTIS SUPRA SQL Programming OpenVMS/UNIX 59

SQLDA names must follow the rules for MANTIS variable names so that
the MANTIS Parser can recognize them in embedded SQL statements.
In other programming languages, you must explicitly declare each
SQLDA element as a data area in your program and then access SQLDA
elements through programming statements. In MANTIS SQL Support,
when you declare an SQLDA, an SQLDA with all the elements shown in
the preceding figure is built for you. The SQLDA contains the default
number of repeating elements set by your Master User as one of your
MANTIS Options. This value can be modified by your program.

The MANTIS SQLDA built-in statement and function allow your MANTIS
program to create and maintain SQLDA data structures which are in turn
used with programmed dynamic SQL statements. Your MANTIS
program can use the SQLDA statement to create a named SQLDA
structure and to set input host variable information. The sqlda-name
parameter must include a text expression or literal which contains the
name of a valid MANTIS variable. Your program can use the SQLDA
function to retrieve information (output host variable information) about
SQL table columns. The SQLDA statement and function are described
and illustrated in the sections that follow. Their uses are outlined below:

♦ To allocate or deallocate an SQLDA:
SQLDA (sqlda-name)=NEW

SQLDA (sqlda-name)=QUIT

♦ To move data from your program into an SQLDA:
SQLDA (sqlda-name, header-element)=expression

SQLDA (sqlda-name, repeating-element, index)=expression

♦ To move data from an SQLDA into your program:
Mantis-variable=SQLDA (sqlda-name, header-element)

Mantis-variable=SQLDA (sqlda-name, repeating-element, index)

In this syntax, sqlda-name, header-element, repeating-element, and
index refer to standard MANTIS variables, literals, or expressions.
Header elements are listed in “SQLDA header elements” on page 64 and
“SQLDA repeating elements” on page 70. In the examples above, index
refers to the sequential occurrence of the repeating element group in the
SQLDA.

Chapter 5 Dynamic SQL in MANTIS SQL support

60 P39-1345-00

Allocate an SQLDA
Use the following SQLDA statement to allocate a new SQLDA.

SQLDA (sqlda-name) = NEW

sqlda-name

Description Required. Specify the name of the SQLDA.

Format 1–18 character text expression

Consideration The expression result must be a valid MANTIS symbolic name of 1–18
characters.

General considerations

♦ This statement allocates a new, empty SQLDA structure with the
default number of repeating elements. The default is set at
installation as one of your MANTIS Options by your Master User.
Within your program you can also modify an SQLDA’s size by
resetting the value of SQLMAX (see the discussion of SQLMAX that
follows).

♦ If you declare an SQLDA of the same name as one that already
exists, the second SQLDA statement is ignored.

♦ The scope of an SQLDA is the current DO level. For example, you
can have two SQLDAs of the same name on different DO levels.
Within a DO level, however, you can only access SQLDAs defined
for that DO level.

Example
SQLDA("SQLDA1")=NEW

The SQLDA structure

MANTIS SUPRA SQL Programming OpenVMS/UNIX 61

Deallocate an SQLDA
Use the following SQLDA statement to deallocate an SQLDA.

SQLDA (sqlda-name) = QUIT

sqlda-name

Description Required. Specify the name of the SQLDA to be deallocated.

Format Must be a valid variable name of 1–18 characters

Consideration The sqlda-name may be any valid MANTIS text expression or text literal.

General consideration

♦ This statement deallocates an existing SQLDA by name. An SQLDA
defined at a DO level is also deallocated when that DO level is exited.
SQLDAs are also deallocated in the case of a RUN without a line
number. A RUN with a line number may produce unpredictable
results if you have modified the program.

Example
SQLDA ("SQLDA1")=QUIT

Chapter 5 Dynamic SQL in MANTIS SQL support

62 P39-1345-00

Move data from your program into an SQLDA header element
Use the following SQLDA statement to set header or column-name
information in the SQLDA.

SQLDA(sqlda-name,header-element) = expression

sqlda-name

Description Required. Supply the name of a previously allocated SQLDA.

header-element

Description Required. Provide the name of an SQLDA header element into which
you are moving data.

Options Only three header elements may be set: SQLN, SLQMAX, and SQLD.

SQLN SQLN is the total number of host variables in the
SQLDA. The value can range from 1–SQLMAX. This
value is normally set as a result of a DESCRIBE
statement. There are also cases where SQLN must be
set by your program (when you are inserting data, for
example).
SQLDA("DA1","SQLN") = 10

SQLMAX SQLMAX is the actual number of repeating groups in the
physical SQLDA structure. The value can range from 1–
300. Setting this number in your program causes the
SQLDA to expand or contract by the specified number of
repetitions. Once physically expanded, the space
occupied by the SQLDA will never physically contract.
For example, if an SQLDA named DA1 has 20 repeating
occurrences, the following statement will reduce the
logical occurrences to five; however, physical space for
20 remains (these numbers are arbitrary).
SQLDA("DA1","SQLMAX") = 5

SQLD SQLD is the total number of output host variables in the
statement. The value of SQLD must be less than or
equal to SQLN. SQLD cannot be set to a value greater
than the current value of SQLN.
SQLDA ("DA1","SQLD") = 8

The SQLDA structure

MANTIS SUPRA SQL Programming OpenVMS/UNIX 63

expression

Description Required. Supply the SQLDA variable count.

Format Standard MANTIS variable, literal, or expression

Consideration Since all SQLDA header elements that can be set are numeric, the
expression must also always be numeric.

General considerations

♦ In a third-generation language like FORTRAN and COBOL, when a
DESCRIBE statement is executed, if the SQLDA is too small
(SQLMAX is less than the number of items that will be returned as a
result of the DESCRIBE), SQL sets SQLN to the required number
and terminates. The program must then expand the SQLDA
accordingly. By contrast, MANTIS SQL Support automatically
expands the SQLDA to the required size if the SQLDA is too small to
accept the results of a DESCRIBE. You can check the number of
occurrences after the DESCRIBE by examining the SQLN value.

♦ The other header element illustrated in “The SQLDA structure” on
page 58, SQLDAID, is read only. If you attempt to use a read-only
element in this SQLDA statement, you will generate a fault.

Example
SQLDA("SQLDA1","SQLN") = TOTAL_NEEDED

Chapter 5 Dynamic SQL in MANTIS SQL support

64 P39-1345-00

SQLDA header elements

Element Function How set/when used Results Updateable?

SQLDAID Eyecatcher Set by SQL “SQLDA” No
SQLN Total number of

host variables in
SQLDA

Set, as a result of a
DESCRIBE, to the total
number of host variable
parameters in the
statement (except for
DESCRIBE in FETCH
USING DESCRIPTOR)
where SQLN is set to
the number of result
table columns

Number of host
variables
required

Yes

SQLMAX Number of
repeating groups
in SQLDA

Set using value from
MANTIS options when
SQLDA is allocated,
can be modified in
program if needed

Number of
repeating groups
attached

Yes

SQLD Total number of
output host
variables in
SQLDA

Set as a result of a
DESCRIBE to the
number of output host
variables (except for
DESCRIBE in FETCH
USING DESCRIPTOR)
where SQLD is set to
the number of result
table columns

Number of output
MANTIS
variables
described in
SQLDA

Yes

The SQLDA structure

MANTIS SUPRA SQL Programming OpenVMS/UNIX 65

Move data from your program into an SQLDA repeating element
Use the following SQLDA statement to supply values for input host
variables, setting the value of repeating elements.

SQLDA(sqlda-name, repeating-element, index) = expression

sqlda-name

Description Required. Supply the name of a previously allocated SQLDA.

repeating-element

Description Required. Specify the name of the repeating element into which you are
moving data.

Options Three repeating elements may be set: SQLCOLNAME, SQLHOSTIND,
and SQLHOSTVAR.

SQLNAME Provides the column name returned by SQL. It can also
be set by your program. SQLCOLNAME has a type of
TEXT and a length of 18. Note that although you can
modify the SQLCOLNAME element, it does not have an
effect on the database. In addition, the database writes
to this element, so its contents may be destroyed at each
EXEC_SQL statement execution.

SQLHOSTIND Contains the indicator value. The indicator value
indicates whether the host variable contains a real value,
or is NULL or MISSING (see “Indicator variables” on
page 31). Possible indicator values and their meanings
include:

Value Meaning
< 0 The host variable data is NULL or MISSING.
> = 0 The host variable contains real values.

SQLHOSTVAR In a third-generation program, this element holds a four-

byte binary address. This address is used to access the
data item being transferred between the program and the
database. A third-generation program must acquire
space for the data item and place the space’s address in
this element. In MANTIS SQL Support, this element is
used to automatically perform the following actions when
you are transferring data into the SQLDA:

Chapter 5 Dynamic SQL in MANTIS SQL support

66 P39-1345-00

General considerations

♦ Allocate a data area for the data item, or expand the data area if
necessary.

♦ Set the value of SQLHOSTVAR to the address of the data area. This
address is used internally by MANTIS SQL Support; your program
does not need to manipulate this value.

♦ Move data from the MANTIS host variable into the SQLDA data area.

♦ Set SQLCOLTYPE and SQLCOLLENGTH to match the definition of
the MANTIS variable according to the SQLCOLTYPE values in
“MANTIS SQL support data type conversion” on page 67.
SQLCOLLENGTH is set to the length of the MANTIS variable.

♦ If you are transferring data out of the SQLDA, this element simply
performs the transfer.

♦ Note as well that the SQLHOSTVAR element may have a type of
numeric or string. When you do not know the type of data you want
to retrieve from the database in advance, use the SQLCOLTYPE and
SQLHOSTVARTY elements to determine the data type.

index

Description Required. Specify the sequential occurrence of the repeating element
into which you are moving data. The value should be relative to 1.

expression

Description Required. Supply an SQLVAR element value.

Format Standard MANTIS variable, literal, or expression

Consideration The expression may be either text or numeric. There are no limitations.

General considerations

♦ SQLCOLLENGTH and SQLHOSTVARTY will be set to the length
and data type of the MANTIS expression.

♦ SQLHOSTVARTY is always set to the MANTIS equivalent data type.
A data type conversion table appears below.

Example
SQLDA ("SQLDA1","SQLHOSTVAR",9) = SALARY

The SQLDA structure

MANTIS SUPRA SQL Programming OpenVMS/UNIX 67

MANTIS SQL support data type conversion

SUPRA DRDM data type
data code

MANTIS SQLDA data type
data code

MANTIS data type data
code

(SQLCOLTYPE) (SQLHOSTVARTY)
Fixed 0 Integer (4bytes, signed)

Float (8 bytes)
1
3

INTEGER
BIG/SMALL

Float 1 Integer (4bytes, signed)
Float (8 bytes)
Fixed point decimal

1
3
5

INTEGER
BIG/SMALL
DECIMAL

Character 2 Character string (filled with
blanks)

6 TEXT

Date 4 Character string 3 TEXT
Time 5 Character string 3 TEXT
String 6 Character string (with

nonprintable characters)
8 TEXT

Note that certain representations of numeric data in the SQL database
may cause conversion errors in the data values. You can avoid this by
using the appropriate MANTIS numeric data type.

Chapter 5 Dynamic SQL in MANTIS SQL support

68 P39-1345-00

Move data from an SQLDA header element into your program
Use the following SQLDA function to read header elements.

mantis-variable = SQLDA(sqlda-name,header-element)

mantis-variable

Description Required. Supply the name into which the SQLDA header element is to
be placed.

Format Standard MANTIS variable

sqlda-name

Description Required. Specify the name of a previously allocated SQLDA.

header-element

Description Required. Provide the name of the header element you are reading.

General considerations

♦ No index value is permitted.

♦ You may read all header elements.

Example
TOTAL_NEEDED = SQLDA ("SQLDA1","SQLN

The SQLDA structure

MANTIS SUPRA SQL Programming OpenVMS/UNIX 69

Move data from an SQLDA repeating element into your program
Use the following SQLDA function to transfer data from a repeating
element into a MANTIS variable.

mantis-variable = SQLDA(sqlda-name, repeating-element, index)

mantis-variable

Description Required. Specify the destination into which the SQLDA repeating
element is to be placed.

Format Standard MANTIS variable or array element reference

sqlda-name

Description Required. Specify the name of a previously allocated SQLDA.

repeating-element

Description Required. Supply the name of the repeating element to be read.

index

Description Required. Provide the sequential occurrence of the repeating element to
be read. This value should be relative to 1.

General considerations

♦ You may read all repeating elements.

♦ Data types between repeating elements and MANTIS variables must
match.

Example
EMPLOYEE_NUMBER = SQLDA("SQLDA1","SQLHOSTVAR",1)

Chapter 5 Dynamic SQL in MANTIS SQL support

70 P39-1345-00

SQLDA repeating elements

Element Function How set/when used Results Updateable?

SQLCOLNAME SQL column name Set by DRDM as the
result of a DESCRIBE;
can be set by program

A column or
header name

Yes

SQLCOLIO Indicates whether
parameter is input
or output

Set by DRDM as the
result of a DESCRIBE

0 = input
1 = output

No

SQLCOLMODE Indicates whether
null values are
allowed

Set as the result of a
DESCRIBE

0 = not allowed
 < > 0 = allowed

No

SQLCOLTYPE Data type as it
resides on the
database. Code
differs depending
on whether it is set
by SQLCOLTYPE
or
SQLHOSTVARTY*

Set by DRDM as the
result of a DESCRIBE

INTEGER BIG
DECIMAL
TEXT

No
SQLCOLTYPE
0 Fixed
1 Float
2 Character
3 Byte
4 Date
5 Time
6 String

SQLCOLLENGTH Total number of
bytes used to store
the data

Set by DRDM as the
result of a DESCRIBE
or by MANTIS when
data is transferred by
SQLHOSTVAR

INTEGER: 4
BIG/SMALL: 8
DECIMAL, TEXT:
maximum column
length when set
by DESCRIBE
MANTIS variable
current length
when set by
SQLDA

No

* Note as well that the SQLHOSTVAR element may have a type of numeric or string. When you do not
know the type of data you want to retrieve from the database in advance, use the SQLCOLTYPE and
SQLHOSTVARTY elements to determine the data type.

The SQLDA structure

MANTIS SUPRA SQL Programming OpenVMS/UNIX 71

Element Function How set/when used Results Updateable?

SQLCOLFRAC Number of
decimal positions
for FIXED column
types

Set by DRDM as the
result of a DESCRIBE
and not used by
MANTIS since all
numeric data is floating
point

-1 for FLOAT
column types

No

SQLHOSTIND Contains the
value of the
indicator variable

Used to indicate the
presence of null
variables and
truncated data. Set by
DRDM during SQL
function: can be set by
your program

= 0 Defined
value; no errors <
0 Null value > 0
Original column
length due to
truncated value

Yes

SQLHOSTVARTY Contains the data
type of the data in
the SQLDA*

Set by MANTIS when
SQLHOSTVAR is used

SQLHOSTVARTY**
INTEGER 1
 Integer (4)
BIG/SMALL 3
 Float (8)
DECIMAL 5
 Fixed point
 decimal
TEXT 15 Variable
 length
 character
 string

No

SQLHOSTVAR Subfunction that
physically
transfers data
between MANTIS
data areas and
the SQLDA data
areas.

Used to transfer value
of variable between
database and MANTIS

Data stored in
MANTIS variable
or SQLDA;
SQLCOLTYPE
and
SQLCOLLENGTH
set according to
value being
transferred when
data is moved into
SQLDA

Yes

** These are not the only SQLHOSTVARTY codes, but a list of codes for MANTIS-compatible data types.

Chapter 5 Dynamic SQL in MANTIS SQL support

72 P39-1345-00

MANTIS SUPRA SQL Programming OpenVMS/UNIX 73

Sample MANTIS SQL programs

MANTIS HELP includes prompters for the dynamic SQL statements
interpreted by MANTIS. These prompters are subject to syntax rules
determined by the support for SUPRA.

Use the following HELP commands:

♦ HELP EXEC_SQL

♦ HELP SQL (displays a list of available SUPRA help prompters)

♦ HELP SQL DECLARE

Each of the SUPRA specific HELP prompters includes an example
program that is reproduced in the EXAMPLES program library. You can
access these programs by running EXAMPLES: APPLICATIONS and
selecting SQL EXAMPLES from the menu.

For clarity, the following examples do not contain error checking or
display logic. Employee information is hardcoded into the programs. Each
static example has the same functionality as the dynamic example on the
page which follows it.

Appendix A Sample MANTIS SQL programs

74 P39-1345-00

A static insert routine
10 ENTRY STATIC_INSERT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "INSERT"

40 .| STATEMENT. IT INSERTS ONE EMPLOYEE INTO AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE, BIRTH_DATE, JOB_CODE,SALARY,EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)

100 .|

110 .EMPLOYEE_NUMBER = "000120"

120 .FIRST_NAME="SEAN"

130 .MIDDLE_INITIAL= " "

140 .LAST_NAME = "O'CONNELL"

150 .BIRTH_DATE=421018

160 .HIRE_DATE=631205

170 .JOB_CODE=58

180 .EDUCATION_LEVEL=14

190 .SALARY=29250

200 .PHONE_NUMBER="2167"

210 .WORK_DEPARTMENT="A00"

220 .SEX="M"

230 .|

240 .EXEC_SQL:| INSERT INTO FRED.TEMPL

250 ..| (EMPNO,

260 ..| FIRSTNME,

270 ..| MIDINIT,

280 ..| LASTNAME,

290 ..| BRTHDATE,

300 ..| HIREDATE,

310 ..| JOBCODE,

320 ..| EDUCLVL,

330 ..| SALARY,

340 ..| PHONENO,

350 ..| WORKDEPT,

360 ..| SEX)

A static insert routine

MANTIS SUPRA SQL Programming OpenVMS/UNIX 75

370 ..| VALUES (:EMPLOYEE_NUMBER,

380 ..| :FIRST_NAME,

390 ..| :MIDDLE_INITIAL,

400 ..| :LAST_NAME,

410 ..| :BIRTH_DATE,

420 ..| :HIRE_DATE,

430 ..| :JOB_CODE,

440 ..| :EDUCATION_LEVEL,

450 ..| :SALARY,

460 ..| :PHONE_NUMBER,

470 ..| :WORK_DEPARTMENT,

480 ..| :SEX)

490 .END

500 EXIT

Appendix A Sample MANTIS SQL programs

76 P39-1345-00

A dynamic insert routine
10 ENTRY DYNAMIC_INSERT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "INSERT"

40 .| STATEMENT. IT INSERTS ONE EMPLOYEE INTO AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY, EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20), MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)

100 .TEXT SQL_TEXT(254)

110 .|

120 .EMPLOYEE_NUMBER="000120"

130 .FIRST_NAME="SEAN"

140 .MIDDLE_INITIAL=" "

150 .LAST_NAME="O'CONNELL"

160 .BIRTH_DATE=421018

170 .HIRE_DATE=631205

180 .JOB_CODE=58

190 .EDUCATION_LEVEL=14

200 .SALARY=29250

210 .PHONE_NUMBER="2167"

220 .WORK_DEPARTMENT="A00"

230 .SEX="M"

240 .|

250 .SQL_TEXT="INSERT INTO FRED.TEMPL"

260 .'"(EMPNO, FIRSTNME, MIDINIT, LASTNAME, BRTHDATE",

270 .'"HIREDATE, JOBCODE, EDUCLVL, SALARY, PHONENO",

280 .'"WORKDEPT, SEX)"

290 .'"VALUES (?,?,?,?,?,?,?,?,?,?,?,?)"

300 .|

310 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

320 .END

330 .|

340 .SQLDA("SQLDA1") = NEW

A dynamic insert routine

MANTIS SUPRA SQL Programming OpenVMS/UNIX 77

350 .SQLDA("SQLDA1","SQLMAX")=12

360 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

370 .END

380 .SQLDA("SQLDA1","SQLHOSTVAR",1)=EMPLOYEE_NUMBER

390 .SQLDA("SQLDA1","SQLHOSTVAR",2)=FIRST_NAME

400 .SQLDA("SQLDA1","SQLHOSTVAR",3)=MIDDLE_INITIAL

410 .SQLDA("SQLDA1","SQLHOSTVAR",4)=LAST_NAME

420 .SQLDA("SQLDA1","SQLHOSTVAR",5)=BIRTH_DATE

430 .SQLDA("SQLDA1","SQLHOSTVAR",6)=HIRE_DATE

440 .SQLDA("SQLDA1","SQLHOSTVAR",7)=JOB_CODE

450 .SQLDA("SQLDA1","SQLHOSTVAR",8)=EDUCATION_LEVEL

460 .SQLDA("SQLDA1","SQLHOSTVAR",9)=SALARY

470 .SQLDA("SQLDA1","SQLHOSTVAR",10)=PHONE_NUMBER

480 .SQLDA("SQLDA1","SQLHOSTVAR",11)=WORK_DEPARTMENT

490 .SQLDA("SQLDA1","SQLHOSTVAR",12)=SEX

500 .|

510 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

520 .END

530 EXIT

Appendix A Sample MANTIS SQL programs

78 P39-1345-00

A static update routine
10 ENTRY STATIC_UPDATE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "UPDATE"

40 .| STATEMENT. IT UPDATES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE

80 .TEXT EMPLOYEE_NUMBER(6)

90 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

100 .|

110 .EMPLOYEE_NUMBER="000120"

120 .FIRST_NAME="JOHN"

130 .MIDDLE_INITIAL="H"

140 .LAST_NAME="DOE"

150 .BIRTH_DATE=490113

160 .HIRE_DATE=880120

170 .|

180 .EXEC_SQL

190 ..|

200 ..| UPDATE FRED.TEMPL

210 ..|

220 ..| SET FIRSTNME = :FIRST_NAME,

230 ..| MIDINIT = :MIDDLE_INITIAL,

240 ..| LASTNAME = :LAST_NAME,

250 ..| BRTHDATE = :BIRTH_DATE,

260 ..| HIREDATE = :HIRE_DATE

270 ..|

280 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

290 .END

300 EXIT

A dynamic update routine

MANTIS SUPRA SQL Programming OpenVMS/UNIX 79

A dynamic update routine
10 ENTRY DYNAMIC_UPDATE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "UPDATE"

40 .| STATEMENT. IT UPDATES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20), MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT DA(18),DAPARM(8)

100 .TEXT SQL_TEXT(254)

110 .|

120 .EMPLOYEE_NUMBER="000120"

130 .FIRST_NAME="JOHN"

140 .MIDDLE_INITIAL="H"

150 .LAST_NAME="DOE"

160 .BIRTH_DATE=490113

170 .HIRE_DATE=880120

180 .|

190 .SQL_TEXT="UPDATE FRED.TEMPL SET"

200 .SQL_TEXT=SQL_TEXT+"FIRSTNME = ?, MIDINIT = ?, LASTNAME = ?,"

210 .SQL_TEXT=SQL_TEXT+"BRTHDATE = ?, HIREDATE = ?"

220 .SQL_TEXT=SQL_TEXT+"WHERE EMPNO = ?"

230 .|

240 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

250 .END

260 .|

270 .SQLDA("SQLDA1")=NEW

280 .DA="SQLDA1"

290 .DAPARM="SQLHOSTVAR"

300 .SQLDA(DA,"SQLMAX")=6

310 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

320 .END

Appendix A Sample MANTIS SQL programs

80 P39-1345-00

330 .SQLDA(DA,DAPARM,1)=FIRST_NAME

340 .SQLDA(DA,DAPARM,2)=MIDDLE_INITIAL

350 .SQLDA(DA,DAPARM,3)=LAST_NAME

360 .SQLDA(DA,DAPARM,4)=BIRTH_DATE

370 .SQLDA(DA,DAPARM,5)=HIRE_DATE

380 .SQLDA(DA,DAPARM,6)=EMPLOYEE_NUMBER

390 .|

400 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

410 .END

420 EXIT

A static select routine

MANTIS SUPRA SQL Programming OpenVMS/UNIX 81

A static select routine
10 ENTRY STATIC_SELECT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "SELECT"

40 .| STATEMENT. IT RETRIEVES EMPLOYEE INFORMATION FOR ONE

50 .| EMPLOYEE FROM AN EMPLOYEE TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY, EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20), MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)

100 .EMPLOYEE_NUMBER="000120"

110 .|

120 .EXEC_SQL:| DECLARE C1 CURSOR FOR

130 ..| SELECT * FROM FRED.TEMPL

140 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

150 .END

160 .EXEC_SQL:| OPEN C1

170 .END

180 .EXEC_SQL:| FETCH C1 INTO :EMPLOYEE_NUMBER,

190 ..| :FIRST_NAME,

200 ..| :MIDDLE_INITIAL,

210 ..| :LAST_NAME,

220 ..| :WORK_DEPARTMENT,

230 ..| :PHONE_NUMBER,

240 ..| :HIRE_DATE,

250 ..| :JOB_CODE,

260 ..| :EDUCATION_LEVEL,

270 ..| :SEX,

280 ..| :BIRTH_DATE,

290 ..| :SALARY

300 .END

310 .EXEC_SQL:| CLOSE C1

320 .END

330 EXIT

Appendix A Sample MANTIS SQL programs

82 P39-1345-00

A dynamic select routine
10 ENTRY DYNAMIC_SELECT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "SELECT"

40 .| STATEMENT. IT RETRIEVES EMPLOYEE INFORMATION FOR ONE

50 .| EMPLOYEE FROM AN EMPLOYEE TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY, EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6)

90 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

100 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)

110 .TEXT SQL_TEXT(254)

120 .|

130 .EMPLOYEE_NUMBER="000120"

140 .SQL_TEXT="SELECT * FROM FRED.TEMPL"

150 .'"WHERE EMPNO = ?"

160 .|

170 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

180 .END

190 .EXEC_SQL:| DECLARE C1 CURSOR FOR S1

200 .END

210 .EXEC_SQL:| OPEN C1 USING :EMPLOYEE_NUMBER

220 .END

230 .SQL_TEXT="FETCH C1 USING DESCRIPTOR"

240 .EXEC_SQL:| PREPARE S2 FROM :SQL_TEXT

250 .END

260 .SQLDA("SQLDA1")=NEW

270 .EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

280 .END

290 .EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

300 .END

310 .EXEC_SQL:| CLOSE C1

320 .END

330 .|

A dynamic select routine

MANTIS SUPRA SQL Programming OpenVMS/UNIX 83

340 .EMPLOYEE_NUMBER=SQLDA("SQLDA1","SQLHOSTVAR",1)

350 .FIRST_NAME=SQLDA("SQLDA1","SQLHOSTVAR",2)

360 .MIDDLE_INITIAL=SQLDA("SQLDA1","SQLHOSTVAR",3)

370 .LAST_NAME=SQLDA("SQLDA1","SQLHOSTVAR",4)

380 .WORK_DEPARTMENT=SQLDA("SQLDA1","SQLHOSTVAR",5)

390 .PHONE_NUMBER=SQLDA("SQLDA1","SQLHOSTVAR",6)

400 .HIRE_DATE=SQLDA("SQLDA1","SQLHOSTVAR",7)

410 .JOB_CODE=SQLDA("SQLDA1","SQLHOSTVAR",8)

420 .EDUCATION_LEVEL=SQLDA("SQLDA1","SQLHOSTVAR",9)

430 .SEX=SQLDA("SQLDA1","SQLHOSTVAR",10)

440 .BIRTH_DATE=SQLDA("SQLDA1","SQLHOSTVAR",11)

450 .SALARY=SQLDA("SQLDA1","SQLHOSTVAR",12)

460 EXIT

Appendix A Sample MANTIS SQL programs

84 P39-1345-00

A static delete routine
10 ENTRY STATIC_DELETE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "DELETE"

40 .| STATEMENT. IT DELETES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .TEXT EMPLOYEE_NUMBER(6)

80 .EMPLOYEE_NUMBER "000120"

90 .EXEC_SQL

100 ..|

110 ..| DELETE FROM FRED.TEMPL

120 ..|

130 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

140 .END

150 EXIT

A dynamic delete routine

MANTIS SUPRA SQL Programming OpenVMS/UNIX 85

A dynamic delete routine
Note that using an SQLDA is not required because no data is transferred
between the database system and the MANTIS program.

10 ENTRY DYNAMIC_DELETE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "DELETE"

40 .| STATEMENT. IT DELETES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .TEXT EMPLOYEE_NUMBER(6),SQL_TEXT(254)

80 .EMPLOYEE_NUMBER "000120"

90 .SQL_TEXT="DELETE FROM FRED.TEMPL WHERE EMPNO = ?"

100 .|

110 .EXEC_SQL

120 ..|

130 ..| PREPARE S1 FROM :SQL_TEXT

140 ..|

150 .END

160 .EXEC_SQL

170 ..|

180 ..| EXECUTE S1 USING :EMPLOYEE_NUMBER

190 ..|

200 .END

Appendix A Sample MANTIS SQL programs

86 P39-1345-00

An SQL query function
This program enables you to interactively execute SQL statements, and
display the column data resulting from the execution of those statements,
at your terminal.

10 ENTRY SQL_QUERY

20 .|

30 .| This example illustrates the use of dynamic SQL to

40 .| perform a QUERY-like function.

50 .|

60 .| E.g.:

70 .| INSERT INTO table VALUES (?,?,...)

80 .| SELECT * FROM table

90 .| SELECT * FROM table WHERE column > ?

100 .| SELECT * FROM table INTO ?,?,... WHERE column = ?

110 .| COMMIT WORK RELEASE is NOT recommended

120 .|

130 .TEXT STMT(255),TEXT_PARM(80),DA_CMD,DA_FETCH

140 .DA_CMD="DA_CMD"

150 .DA_FETCH="DA_FETCH"

160 .SQLDA(DA_CMD)=NEW

170 .SQLDA(DA_FETCH=NEW

180 .EXEC_SQL:|WHENEVER SQLERROR DO QHANDLER

190 .END

200 .|

210 .WHILE NOT(FINISHED)

220 ..|

230 ..| Prompt for next SQL statement and execute it

240 ..|

250 ..STMT=""

260 ..SHOW "SQL>";:OBTAIN STMT

An SQL query function

MANTIS SUPRA SQL Programming OpenVMS/UNIX 87

270 ..IF KEY <> "ENTER" OR STMT=""

280 ...FINISHED =TRUE

290 ..ELSE

300 ...UNPAD STMT BEFORE

310 ...STMT=UPPERCASE(STMT)

320 ...IF POINT(STMT-"?")=0:| Any host variables?

330SQLDA(DA_CMD,"SQLN")=0

340SQLDA(DA_CMD,"SQLD")=0

350EXEC_SQL:|EXECUTE IMMEDIATE :STMT

360END

370 ...ELSE:| Yes, use SQLDA

380EXEC_SQL:|PREPARE S1 INTO DA_CMD FROM :STMT

390END

400IF SQLDA(DA_CMD,"SQLN")>SQLDA(DA_CMD,"SQLD")

410DO SQLDA_INPUT(DA_CMD)

420END

430EXEC_SQL:|EXECUTE S1 USING DESCRIPTOR DA_CMD

440END

450 ...END

460 ...IF SQLCA("SQLCODE")=0

470IF STMT(1,6)="SELECT" AND POINT(STMT-"INTO")=0

480|

490| A SELECT without an INTO clause:

500| FETCH all rows from result table

510|

520WHILE SQLCA("SQLCODE")=0

530EXEC_SQL:|FETCH USING DESCRIPTOR DA_FETCH

540END

550IF SQLCA("SQLCODE")=0

560DO SQLDA_OUTPUT(DA_FETCH)

570END

580END

590ELSE:| No result table to process

600IF SQLDA(DA_CMD,"SQLD")>0 AND SQLCA("SQLCODE")=0

610DO SQLDA_OUTPUT(DA_CMD)

620END

630END

640 ...END

Appendix A Sample MANTIS SQL programs

88 P39-1345-00

650 ..END

660 .END

670 EXIT

680 |

690 | Allow continuation after failure to execute SQL

700 | statement

710 ENTRY QHANDLER

720 .SHOW "*** SQL ERROR CODE =";SQLCA("SQLCODE")

730 .SHOW "***";SQLCA("SQLERRMC")

740 .SHOW "*** Press RETURN to continue, CANCEL to stop";:WAIT

750 .IF KEY <> "ENTER"

760 .. STOP

770 .END

780 EXIT

790 |

800 | Process Input host-variable parameters (?)

810 |

820 ENTRY SQLDA_INPUT(DA)

830 .I=0

840 .WHILE I<SQLDA(DA,"SQLN")

850 ..I=I+1

860 ..IF SQLDA(DA,"SQLCOLIO",I)=0:| An Input parameter

870 ...SHOW "Enter Input parameter";I;";";

880 ...WHEN SQLDA(DA,"SQLCOLTYPE",I)<2

890OBTAIN BIG_PARM

900SQLDA(DA,"SQLHOSTVAR",I)=BIG_PARM

910 ...WHEN SQLDA(DA,"SQLCOLTYPE",I)>2

920TEXT BUFFER

930OBTAIN TEXT_PARM

940SQLDA(DA,"SQLHOSTVAR",I)=TEXT_PARM

950 ...END

960 ..END

970 .END

980 EXIT

An SQL query function

MANTIS SUPRA SQL Programming OpenVMS/UNIX 89

990 |

1000 | Process Output host-variable parameters

1010 |

1020 ENTRY SQLDA_OUTPUT(DA)

1030 .I=0

1040 .WHILE I<SQLDA(DA,"SQLN")

1050 ..I=I+1

1060 ..IF SQLDA(DA,"SQLCOLIO",I)=1:| An Output parameter

1070 ...SHOW SQLDA(DA,"SQLHOSTVAR",I),

1080 ..END

1090 .END

1100 .SHOW

1110 EXIT

Appendix A Sample MANTIS SQL programs

90 P39-1345-00

A dynamic column select
This program retrieves the column name, type, and length, and the first
row of the column from a table specified by the user. The program uses
dynamically executed statements.

10 ENTRY SQL_LIST_COLUMNS

20 .|

30 .| THIS PROGRAM LISTS COLUMNS BASED ON TABLE NAME

40 .|

50 .TEXT TABLE_NAME(32)

60 .TEXT SQL_FUNCTION(100) contains the SQL statement

70 .SHOW "PLEASE ENTER TABLE NAME:"

80 .OBTAIN TABLE_NAME

90 .SQL_FUNCTION="SELECT * FROM"+TABLE_NAME creates the SQL statement

100 .EXEC_SQL

110 ..| EXECUTE IMMEDIATE :SQL_FUNCTION creates the result set

120 .END

130 .SQL_FUNCTION="FETCH USING DESCRIPTOR"

140 .EXEC_SQL:| PREPARE S1 FROM :SQL_FUNCTION prepares the SQLstatement

150 .END

160 .SQLDA("SQLDA1")=NEW

170 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1 returns table column data

180 .END into the SQLDA

190 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1 retrieves first row of data

200 .END from the table

210 .COUNTER=1

220 .SHOW"COLUMN NAME",AT(25),"TYPE",AT(45),"LENGTH",AT(55), "DATA"

230 .WHILE COUNTER<SQLDA("SQLDA1","SQLD")

240 ..SHOW SQLDA("SQLDA1","SQLCOLNAME",COUNTER) displays returned data

250 ..'AT(25),SQLDA("SQLDA1","SQLCOLTYPE",COUNTER)

260 ..'AT(45),SQLDA("SQLDA1","SQLCOLLENGTH",COUNTER)

270 ..'AT(55),SQLDA("SQLDA1","SQLHOSTVAR",COUNTER)

280 ..COUNTER=COUNTER+1

290 .END

300 .WAIT

310 EXIT

MANTIS SUPRA SQL Programming OpenVMS/UNIX 91

Features not supported

The following features of SQL are not supported for SUPRA SQL:

♦ Host variables may not be specified in a SELECT list. For example:
SELECT A,:VX,C

INTO :VA,:VB,:VC

 VX is invalidly used as a host variable.

♦ Exact line number reference upon the detection of a syntax error is
not supported in all cases. Once control is transferred to the
database system in the execution of an SQL statement, MANTIS no
longer has control and therefore cannot keep track of where the error
was encountered. For example, if an error occurred in the INTO
clause of the following statement:
1330 ..X=X+1

1340 ..EXEC SQL

1350 ...|SELECT A,B,C

1360 ...|INTO :VA,:VB),:VC <--- error— the “)” on “:VB)”
1370 ...|FROM TABLE.1

1380 ...|WHERE A=1

1390 ..END

1400 ..X=X-VA

Appendix B Features not supported

92 P39-1345-00

 For unbound programs, MANTIS points to the last line in the program
block. For bound programs, MANTIS points to the line before the
END statement. For example:
1330 ..X=X+1

1340 ..EXEC SQL

1350 ...|SELECT A,B,C

1360 ...|INTO :VA,:VB),:VC <--- error— the “)” on “:VB)”
1370 ...|FROM TABLE.1

1380 ...|WHERE A=1 <--- FAULTS display this line when bound
1390 ..END <--- FAULTS display this line when unbound
1400 ..X=X-VA

♦ The contents of one SQLDA structure cannot be implicitly copied into
another in a single instruction. The following statement is not
permitted.
SQLDA("NAME2") = SQLDA("NAME1")

 However, each element of an SQLDA can be passed individually to
the corresponding element of a different SQLDA.

♦ MANTIS programs containing dynamic SQL statements are not
portable between MANTIS SQL Support for the IBM mainframe and
MANTIS SQL Support for OpenVMS and UNIX. You can, however,
port programs containing static embedded SQL between the two
systems.

MANTIS SUPRA SQL Programming OpenVMS/UNIX 93

Differences: MANTIS SQL support
versus SQL in COBOL; MANTIS
versus SQL

SQL in MANTIS SQL Support is essentially the same as SQL in
FORTRAN and COBOL. In this manual, SQL in these nonMANTIS
languages is called SQL in COBOL for convenience.

This appendix summarizes the differences between SQL in MANTIS SQL
Support and SQL in other languages. More information is provided in the
sections specified.

Appendix C Differences: MANTIS SQL support versus SQL in COBOL; MANTIS versus SQL

94 P39-1345-00

SQL in MANTIS SQL support versus SQL in COBOL
♦ You embed SQL statements in a MANTIS application program as

standard MANTIS comments and delimit each SQL statement with
an EXEC SQL-END block. No MANTIS comments are permitted
within the EXEC SQL-END block. All comments within the block are
considered SQL statement text.

♦ In the SQL WHENEVER statement:

- The GOTO clause is replaced by a standard MANTIS DO
statement, and STOP is replaced by FAULT. See “The SQL
WHENEVER statement” on page 41.

- The default for the condition SQLERROR is FAULT; in SQL in
COBOL, the default is CONTINUE. See “The SQL WHENEVER
statement” on page 41.

- WHENEVER settings may have different ranges of applicability
than they would in SQL in COBOL. See “Scope of the
WHENEVER statement” on page 46.

♦ SQLCA elements are accessed through the SQLCA
statement/function rather than as items of data. See “The SQLCA in
MANTIS SQL support” on page 47.

♦ Elements in SQLDAs are accessed through the SQLDA
statement/function, rather than as items of data. See “The scope of
cursors, statements, and SQLDAs” on page 36.

♦ In a MANTIS SQL Support application, you may receive messages
from three sources: the MANTIS nucleus, MANTIS SQL Support, and
the database system. For detailed explanations and actions, refer to
AD/Advantage MANTIS Messages and Codes OpenVMS/UNIX,
P39-1330.

♦ MANTIS SQL Support does not support an SQL INCLUDE
statement, as INCLUDE denotes a preprocessor action. The SQLCA
and SQLDA functions eliminate the need to INCLUDE these
structures. For more information on SQLDA, see “The scope of
cursors, statements, and SQLDAs” on page 36; for more information
on SQLCA, see “The SQLCA in MANTIS SQL support” on page 47.

♦ DECLARE statements are unnecessary for tables and views.

MANTIS versus SQL

MANTIS SUPRA SQL Programming OpenVMS/UNIX 95

MANTIS versus SQL
♦ In MANTIS, quotation marks (“) delimit character-string constants. In

SQL, apostrophes (‘) delimit character-string constants.

♦ Permissible data type conversions between SQL and MANTIS are
listed in “Data conversion between MANTIS SQL support and the
SUPRA database” on page 32.

♦ Only data type codes for MANTIS-compatible data types are returned
in the SQLCOLTYPE element in the SQLDA. Valid data types are
thus limited to those listed in “SQLCA elements” on page 49.

Appendix C Differences: MANTIS SQL support versus SQL in COBOL; MANTIS versus SQL

96 P39-1345-00

MANTIS SUPRA SQL Programming OpenVMS/UNIX 97

Index

|
|

description 18
in an EXEC_SQL-END block

26

A

accessing
SQLCA elements 19
SQLDAs 19

allocate, an SQLDA 60
array, using host variables in 30

B

BIG variable 29
binding 35
blanks, using in an EXEC_SQL-

END block 27

C

COBOL SQL, differences from
MANTIS SQL support 19

code sequence, for dynamic SQL
56

colons
in an EXEC_SQL-END block

27
using with host variables 30

columns, indicator variables for
31

comment character 18
comments

in an EXEC_SQL-END block
28

in SQL statements 26
COMMIT WORK RELEASE 23,

38
COMMIT, using in embedded

SQL applications 51–52

CONNECT 23
absence of 23

connection See also sign-on
to SUPRA 37

CONTINUE 44
conversion See data conversion
cursors, MANTIS interpretation of

36

D

data type conversion
MANTIS SQLDA vs. SUPRA

DRDM 67
MANTIS vs. SUPRA 32

data types
MANTIS vs SQL 30
MANTIS vs. SQL 30

data, moving
from an SQLDA header

element into your program
68

from an SQLDA repeating
element into your program
69

from your program into an
SQLDA repeating element
65

from your program into and
SQLDA header element 62

database name, specifying in
your MANTIS programs 37

database, multiple session
support 37

DBNAME 49, 50
DBTYPE 22, 49, 50
deallocate, an SQLDA 61
DECLARED 36
defaults

DBTYPE 22
SQLERROR 19
WHENEVER conditions 44

disconnection
from SUPRA 38
possible causes of 38

DO 43
dynamic SQL

code sequence for 56
defined 55
description 20

E

elements, SQLCA 49–50

Index

98 P39-1345-00

embedding SQL statements
described 17
rules for 26–28

END 18
environment variables 20
error messages 53
errors, signing on to SUPRA 23
EXEC_SQL

syntax for 39–40
using for DBTYPE 22

EXEC_SQL-END block
examples 26–28
executing 35
rules for using 26–28
storage of in a MANTIS SQL

Support program 33
using colons in 27
using mulitple blanks in 27
using mulitple lines in 27
using text in 26
with a MANTIS statement 28

extensions 23

F

Facility Selection Menu 21
failure See errors
FAULT 41, 44
FETCH

example 57
in an external sub-program 36

FINISH 46

G

GOTO, MANTIS SQL support
equivalent 41

H

header elements
moving data from 68
moving data into 62–64
SQLD 62
SQLDA 64
SQLMAX 62
SQLN 62

host variables
description of 18
indentification of 27
number of 62

using colons in 30
using in a MANTIS array 30
using in an EXEC_SQL-END

block 30

I
implicit sign-on, to SUPRA 23
indentation level 18
indicator variables

example 31
using in SQL statements 31

input host variable, description of
18

L

lock 23
logical names 20

required for SUPRA sign-on 23

M

main program clean-up 38
MANTIS SQL options 22
MANTIS SQL support

data conversion 32
data type conversion 67
differences from SQL in

COBOL 19
messages 19
processing of SQL statements

17
security 20
software requirements for 19

MANTIS SQL Support
function of 17

MANTIS SQL support programs
considerations for writing 33

MANTIS SQL support programs
rules for embedding SQL

statements 26–28
MANTIS SQL Support programs

running with non-SQL MANTIS
programs 17

MANTIS statements
in SQL statements 26
with an EXEC_SQL-END block

28
MANTIS variables 18. See also

host variables

Index

MANTIS SUPRA SQL Programming OpenVMS/UNIX 99

MANTIS_SQL_ * logicals 23
Master User 21
messages, source of in a

MANTIS SQL support
program 19

multiple lines, using in an
EXEC_SQL-END block 27

Multiple Session Support 37

N

nonSQL MANTIS programs,
using with MANTIS SQL
programs 17

O

OPENED 36
output host variable 18

P

processing, SQL statements 17
program clean-up See main

program clean-up

R

repeating elements
moving data from 69
moving data into 65–67
SQLCOLNAME 65
SQLHOSTIND 65
SQLHOSTVAR 65

requirements
for MANTIS SQL support 19
logicals for SUPRA sign-on 23

RESET, using in embedded SQL
applications 51

ROLLBACK, using in embedded
SQL statements 51–52

rules
for COMMIT and RESET in

embedded SQL
applications 51–52

for embedding SQL statements
in a MANTIS program 26–
28

RUN 35

S

security, in MANTIS SQL support
20

SELECT, example 56
session number, specifying in

your MANTIS program 37
SET DBNAME 46
sign-off See disconnection
sign-on See also connection

failure of 23
implicit 23
to SUPRA 23

software requirements, for
MANTIS SQL support 19

spaces, using in an EXEC_SQL-
END block 27

SQL 18
SQL extensions 23
SQL statements

COMMIT WORK RELEASE 38
CONNECT 23
dynamic execution of 55
embedding in MANTIS

programs 17
embedding rules 26–28
EXEC_SQL 18, 39
FINISH 46
invalid uses of 26
MANTIS processing of 17
SET DBNAME 46
syntax, general 18
using indicator variables in 31
WHENEVER 41–44

declarative vs. interpretive 45
differences between MANTIS

SQL and COBOL SQL 19
SQLCA 23, 32

elements 49–50
syntax for 47–48
using for DBTYPE 22

SQLCABC 49
SQLCAID 49
SQLCODE 49
SQLCOLFRAC 71
SQLCOLIO 70
SQLCOLLENGTH 70
SQLCOLMODE 70
SQLCOLNAME 65
SQLCOLTYPE 70
SQLD 62, 64
SQLDA

Index

100 P39-1345-00

accessing 19
allocating 60
deallocate 61
declaring in your program 59
header elements

list of 64
moving data from 68
moving data into 62
SQLD 62
SQLMAX 62
SQLN 62

repeating elements
list of 70
moving data from 69
moving data into 65–67
SQLCOLNAME 65
SQLHOSTIND 65
SQLHOSTVAR 65

size of 63
structure of 58

SQLDAID 64
SQLERRDn 49
SQLERRMC 49, 50
SQLERRML 49
SQLERROR 42
SQLERRP 49
SQLEXCEPTION 42
SQLEXT 49
SQLHOSTIND 65, 71
SQLHOSTVAR 65, 71
SQLHOSTVARTY 71
SQLMAX 62, 64
SQLN 62, 64
SQLVARINC 22
SQLWARNING 42
SQLWARNn 49
static SQL,description 20
STOP, MANTIS SQL support

equivalent 41
Super User See Master User
SUPRA

connection to 37
data conversion 32
disconnection from 38
multiple database support 37
signing on to 23
specifying session number 37

syntax
EXEC_SQL-END 39–40
SET DBNAME 46
SQLCA 47–48
WHENEVER 41–44

T

text, rules for embedding in an
EXEC_SQL-END block 26

timeout 23

U

updating, MANTIS user profile 22
user profile

enhancements to 22
updating 22

V

values, for indicator variables 31
variables See MANTIS variables

or host variables
vertical bar

description 18
in an EXEC_SQL-END block

26

W

WHENEVER
actions

CONTINUE 44
DO 43
FAULT 44

conditions
SQLERROR 42
SQLEXCEPTION 42
SQLWARNING 42

declarative vs. interpretive 45
defaults 44
syntax for 41–44

	Back to Welcome (UNIX)
	Back to Welcome (OpenVMS Alpha)
	Back to Welcome (OpenVMS VAX)
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	MANTIS documentation series
	Educational material

	Chapter 1 - MANTIS SQL support overview
	Software requirements for MANTIS SQL support
	Differences between SQL in MANTIS and SQL in COBOL
	Logical names
	Static and dynamic SQL
	Security

	Chapter 2 - System maintenance
	MANTIS SQL options
	Update User Profile
	Signing on

	Chapter 3 - Embedding SQL statements in MANTIS programs
	Embedding rules
	Using host variables
	Referencing values in a MANTIS array
	MANTIS versus SQL data types

	Indicator variables
	Data conversion between MANTIS SQL support and the SUPRA database

	Chapter 4 - Programming considerations
	Running an EXEC_SQL-END block
	The scope of cursors, statements, and SQLDAs
	Connection to the SUPRA database and multiple session support
	Disconnection from the SUPRA database
	The MANTIS EXEC_SQL statement
	The SQL WHENEVER statement
	Declarative versus interpretive WHENEVER statements
	Scope of the WHENEVER statement

	The SQL FINISH statement
	The SQL SET DBNAME statement
	The SQLCA in MANTIS SQL support
	SQLCA syntax
	SQLCA elements

	COMMIT and ROLLBACK and MANTIS SQL support’s COMMIT and RESET
	Error messages

	Chapter 5 - Dynamic SQL in MANTIS SQL support
	An overview of dynamic SQL
	Executing a statement dynamically
	Code sequence for dynamic SQL

	The SQLDA structure
	Allocate an SQLDA
	Deallocate an SQLDA
	Move data from your program into an SQLDA header element
	SQLDA header elements

	Move data from your program into an SQLDA repeating element
	MANTIS SQL support data type conversion

	Move data from an SQLDA header element into your program
	Move data from an SQLDA repeating element into your program
	SQLDA repeating elements

	Appendix A - Sample MANTIS SQL programs
	A static insert routine
	A dynamic insert routine
	A static update routine
	A dynamic update routine
	A static select routine
	A dynamic select routine
	A static delete routine
	A dynamic delete routine
	An SQL query function
	A dynamic column select

	Appendix B - Features not supported
	Appendix C - Differences: MANTIS SQL support versus SQL in COBOL; MANTIS versus SQL
	SQL in MANTIS SQL support versus SQL in COBOL
	MANTIS versus SQL

	Index

